

U.S. DESIGN GUIDANCE FOR CLT FLOOR SYSTEMS WITH RESIDENTIAL AND OFFICE OCCUPANCY LOADS

National Institute of BUILDING SCIENCES[®]

Samantha J. Leonard | PEsleonard@rdh.comNathan Brownncb5048@psu.eduCorey Gracie-Griffincorey@psu.edu

Special thanks to: Ryan Solnosky, Kevin Parfitt, and Ali Memari **Partial funding by:** AIA Upjohn Research Initiative Grant

June 11, 2024

ARCHITECTURAL ENGINEERING

About PSU Architectural Engineering

FOUNDED IN 1910

The primary mission of the department is to advance the built environment through the development of world-class architectural engineers and research.

RDH

Making Buildings Better[™]

About RDH Building Science

FOUNDED IN 1997

RDH is a building science consulting and engineering firm delivering climate-responsive solutions across North America. Our network of building science professionals spans 11 offices.

About RDH Building Science

Our Services and Capabilities

Building Enclosure

- Design Consulting
- Construction Administration
- Construction Management
- Building Commissioning

Energy & Climate

- Passive House
- Energy Modeling
- Carbon Strategy

Façade Engineering

- System Development
- Advanced Analytics
- Structural Engineering

Asset Management

- Asset Planning
- Assessments
- Forensics
- Litigation and Claims

Research, Policy & Training

- Product Development
- Policy Development
- Lab Testing & Monitoring
- Industry Training + Publications

Learning Objectives

- Discover how parametric modelling generates data for the early-stage design of mass timber floor structures.
- Understand how design decisions related to floor structure type and layout, bay size, and prescriptive fire design strategy affect design goals.
- Learn how mass timber floor systems perform for embodied carbon, structural design, and acoustic insulation.
- Apply early-stage design guidance to mass timber floor structures.

Presentation Overview

Introduction

Research Questions

Methods

Results

Introduction

Mass timber in construction, pros and cons, existing tools

What is Mass Timber?

"Large" engineered wood products built up from smaller elements

Introduction

Methodology

Conclusions Results

[Photos from: StructureCraft] **8 of 66**

Mass Timber Structural Elements

Cross Laminated Timber (CLT)

Glue-laminated Timber (Glulam)

[Photos from: Engineering News Record and StructureCraft] 9 of 66

PennState RDH Mational Institute of BUILDING SCIENCES

Introduction

Methodology

Conclusions

Results

Mass timber Can Reduce Embodied Carbon (EC)

PennState RDH

National Institute of BUILDING SCIENCES [Figure from https://passivehouseaccelerator.com/articles/addressing-embodied-energy-with-mass-timber] **10 of 66**

Advantages

- Lightweight
- Prefabrication
- **Reduced schedules**
- **Reduced site work** .
- Reduced environmental impact •
- Inherent fire protection
- Appearance

Fig. 20-4. After fire scene. Shows a wood beam supporting twisted steel I-beams. (Forest Products Laboratory)

Results

[Photos from: Forest Products Laboratory] **11 of 66**

PennState RDH

National Institute of BUILDING SCIENCES

Introduction

Methodology

Disadvantages

- Walking-induced vibrations
- Poor acoustic insulation
- Not well suited for large spans, seismic, sensitive needs like labs
- Limited North America manufacturers
- Learning curve
- Construction moisture protection
- Limited Design Guidance

[Figure from: WoodWorks] **12 of 66**

Research Questions

Limited guidance at intersection of EC and structural design

PennState

Results

Conclusions

14 of 66

For mass timber and hybrid mass timber floors...

What are the trends in EC and structural design objectives?

How do they compare to baseline steel-reinforced concrete floor systems?

How do prescriptive fire design options affect EC and floor system depth?

What are the impacts of designing for improved acoustic insulation (STC/IIC) beyond code minimum for floors?

Methodology

Floor systems, variables, limits states, and outputs

All-timber systems

*depth = topping + CLT panel + max framing depth + fireproofing **Bay width assigned to girder's spanning direction

17 of 66

PennState RDH Mational Institute of BUILDING SCIENCES

Introduction

Methodology

Results

Hybrid-timber systems

Methodology

Introduction

Results

Baseline Concrete Floors

*depth = topping + CLT panel + max framing depth + fireproofing **Bay width assigned to girder's spanning direction

19 of 66

PennState RDH Mational Institute of BUILDING SCIENCES

Introduction

Methodology

Results

Design space exploration (DSE) uses parametric modeling to discover trends

National Institute of PennState RDH BUILDING SCIENCES

A.

Introduction

Methodology

Results

Conclusions

[Figure adapted from Brown, 2020] **20 of 66**

Each design is automatically sized for the applicable limit states

National Institute o PennState RDH BUILDING SCIENCES

Introduction

Methodology

Results

Conclusions

[Figure adapted from Brown, 2020] **21 of 66**

Fire design strategies modeled

National Institute of

BUILDING SCIENCES

A.

PennState

RDH

Char design option for fire

National Institute of BUILDING SCIENCES

PennState

RDH

Introduction

Methodology

Timber carbon storage assumptions vary

0% Carbon storage assumed

Environmental Product Declaration

CROSSLAM EPD for Cross Laminated Timber produced by Structurlam in Okanagan Falls. BC

111	1	
41	h	
		6 6

ENVIRONA NORTH AMERICAN AMERICAN WOOD COUNCIL

e American Wood Council (AWC) and nably sourced wood product

11

24 of 66

it www.awc.org and www.cwc.ca.

Industry-Focused EC Material Academic-Focused EC Material Information Coefficients Material Coefficients Material ECECMaterial Data Source Data Source Assumptions Value Value Average of five North Carbon storage is 0.27 0.437 American CLT EPD's neglected Cross Laminated ICE V3.0 [28] following ISO Timber, CLT Timber (CLT) Carbon storage is 21930:2017 A and B -1.19 -1.20included¹ [31]-[35] Carbon storage is 0.25 American Wood Council 0.512 neglected Glued Laminated EPD for North American ICE V3.0 - Timber. Timber (Glulam) Glued Laminated Timber Glulam Carbon storage is -1.04 -0.90 [36] included¹

PennState RDH

Introduction

Methodology

Results

Conclusions

CANADIAN WOOD COUNCIL

Timber carbon storage assumptions vary

100% Carbon storage assumed

Environmental Product Declaration

CROSSLAM CLT

ENVIRONMENTAL PRODUCT DECLARATION NORTH AMERICAN GLUED LAMINATED TIMBE AMERICAN WOOD COUNCIL

de constructions de la construction de la construct

Please follow our sustainability initiatives at www.awc.org and www.cwc.ca.

Industry-Focused EC Material Academic-Focused EC Material Information Coefficients Material Coefficients Material ECECMaterial Data Source Data Source Value Assumptions Value Average of five North Carbon storage is 0.27 0.437 American CLT EPD's neglected Cross Laminated ICE V3.0 [28] following ISO Timber, CLT Timber (CLT) Carbon storage is 21930:2017 A and B -1.19 -1.20included¹ [31]-[35] Carbon storage is 0.25 American Wood Council 0.512 neglected Glued Laminated EPD for North American ICE V3.0 - Timber. Timber (Glulam) Glued Laminated Timber Glulam Carbon storage is -1.04 -0.90 [36] included¹

RDH

Introduction

Methodology

Results

25 of 66

Limitations

- Focus on EC, not operational carbon
- Connections not included
- Focus on gravity loads
- Modeled a continuous single bay (appropriate for 3 bays minimum)
- Rough estimates for columns
- Residential Loads
- Mid-range representative wood species/grade
- Acoustic assembly self-weight not incorporated into parametric model
- Fire design prescriptive only
- Walking-induced vibrations simplified

Results

Structural & EC, Concrete Comparisons, Fire Design, Acoustics

What are the trends in EC and structural design

objectives for a variety of mass timber and hybrid mass timber floor systems?

32 of 66

Introduction

Methodology

RDH

A

PennState

Conclusions

Results

Floor system trends vary by metric and variable combinations

35 of 66

Floor system trends vary by metric and variable combinations

Timber-framed designs are ~1-2'deeper than steel-hybrid

Differences in systems depend on many variables

At \downarrow spans, TG/TS are lightest; at \uparrow spans, TGb/TSb are lightest

Differences in systems depend on many variables

Protected deigns have lowest EC in systems without infills (75% Carbon Storage)

Exposed designs have lowest EC in TGb system

(75% Carbon Storage)

A single infill is typically preferred for TSb and TGb systems

PennState RDH Mational Institute of BUILDING SCIENCES

A.

Introduction

Methodology

Results (

Conclusions

43 of 66

How do mass timber and hybrid mass timber floor systems compare to baseline steel-reinforced concrete floor systems in relation to EC and structural design objectives?

Concrete systems are 1-3' shallower than mass timber systems

Mass timber systems are much lighter than the concrete baselines

Introduction

A.

PennState

RDH

BUILDING SCIENCES

Methodology

Results

Conclusions

46 of 66

Concrete baseline floors have an EC range of ~18-64 lb CO_2 eq/ft²

0% Carbon Storage

National Institute o **BUILDING SCIENCES**

A.

PennState

RDH

Introduction

Methodology

Results

Concrete flat plate has lower EC than TSb systems below 16' (0% Carbon Storage)

A.

How do prescriptive fire design options affect EC

and floor system depth for mass timber and

hybrid mass timber floor systems?

49 of 66

Fire design options are comparable in many scenarios

Fire design options are comparable in many scenarios

National Institute of BUILDING SCIENCES

Introduction

Methodology

Conclusions Results

RDH Mational Institute of BUILDING SCIENCES⁻

A.

PennState

Introduction

Methodology

Results Conclusions

52 of 66

Fire design options are comparable in many scenarios

>1' difference at lowest spans for timber-framed systems

54 of 66

A.

PennState

RDH

-m-57-m

How does designing for improved acoustic insulation beyond code minimum for floor assemblies affect mass timber EC and floor system depth?

85 Acoustically-Tested CLT Floor Assemblies with EC Data

Category	Ceiling side concealed	Ceiling side concealed; no topping	CLT-concrete composite	Concrete or gypsum topping	Concrete or gypsum topping w/ finish floor	No concrete or gypsum topping	Raised access floor	Raised wooded sleepers	Raised wooded sleepers; no topping
Typical Assembly Construction									
# Studied Assemblies	25	17	6	7	13	3	7	5	2

Classifying sound insulation performance

Performance Tier	STC/IIC	Description			
Non-code-	<50	Clearly hear normal activities			
compliant		lot neighbor			
Code	50	Normal activities of neighbors			
Minimum	50	are compared what mutod			
Good	55-59	are somewhat muted			
Better	60-64	Cannot hear normal activities			
Best	65+	of neighbor (in most cases)			

RDH

Concealed assemblies offer the greatest STC/IIC

BUILDING SCIENCES

PennState

 \mathbf{R}

Concealed assemblies offer the greatest STC/IIC

Assembly Category Ceiling Side Concealed Ceiling Side Concealed (no Topping) CLT-Concrete Composite Concrete/Gypsum Topping Concrete/Gypsum Topping w/ Flooring GLT Decking NLT Decking

- No Concrete/Gypsum Topping
- Raised Access Floor
- 🛤 Raised Wooden Sleepers
- + Raised Wooden Sleepers (no Topping)
- A T&G Decking

59 of 66

RDH Mational Institute of BUILDING SCIENCES

PennState

Introduction

Methodology

Results

125

Concealed assemblies offer the greatest STC/IIC

Assembly Category

- Ceiling Side Concealed
- Ceiling Side Concealed (no Topping)
- ▼ CLT-Concrete Composite
- Concrete/Gypsum Topping
- Concrete/Gypsum Topping w/ Flooring
- GLT Decking
- * NLT Decking
- No Concrete/Gypsum Topping
- Raised Access Floor
- Raised Wooden Sleepers
- + Raised Wooden Sleepers (no Topping)
- 🔺 T&G Decking

60 of 66

125

Conclusions

Key Takeaways and Future Work

Key Guidance

PennState

• Where EC is a priority, consider protected designs without infills or the exposed TGb designs for greater carbon storage using 75% carbon storage assumption.

 Where depth is a priority, consider selecting steel-framed designs, which can be 1-2' shallower.

Key Guidance

PennState

• Substitute with mass timber where appropriate to achieve lighter systems with lower EC as compared to common baseline concrete floors.

• Consider limiting designs to a single infill beam to reduce mass and EC.

Key Guidance

PennState

• Carefully consider timber carbon storage assumptions, which affect design guidance

• To maximize acoustic insulation, consider under-ceiling treatment, and to improve insulation with balanced performance metrics, consider wooden sleepers

Future Work – AIA Design Guide and Web Tool

Introduction

Methodology

Results

U.S. DESIGN GUIDANCE FOR CLT FLOOR SYSTEMS WITH RESIDENTIAL AND OFFICE OCCUPANCY LOADS

Discussion + Questions

sleonard@rdh.com ncb5048@psu.edu corey@psu.edu Brock Commons under Construction: Timber floor and frame with concrete cores [Photo from: Think Wood]

66 of 66

Introduction

Methodology

Results