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About PSU Architectural 
Engineering The primary mission of the department is to advance the 

built environment through the development of world-class 
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delivering climate-responsive solutions across North 
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About RDH Building Science

- Design Consulting

- Construction Administration
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- System Development
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- Structural Engineering

Façade Engineering

- Passive House

- Energy Modeling

- Carbon Strategy

Energy & Climate
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- Assessments
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- Litigation and Claims 

Asset Management

- Product Development
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- Lab Testing & Monitoring

- Industry Training + Publications
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Learning Objectives

• Discover how parametric modelling generates data for the early-stage 
design of mass timber floor structures.

• Understand how design decisions related to floor structure type and 
layout, bay size, and prescriptive fire design strategy affect design 
goals.

• Learn how mass timber floor systems perform for embodied carbon, 
structural design, and acoustic insulation.

• Apply early-stage design guidance to mass timber floor structures.
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Presentation Overview

Introduction

Research Questions

Methods

Results

Conclusions



Mass timber in construction, pros and cons, existing tools

Introduction
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What is Mass Timber?

[Photos from: StructureCraft]

"Large" engineered wood products built up from smaller elements
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Mass Timber Structural Elements

[Photos from: Engineering News Record and StructureCraft]

Cross Laminated Timber 
(CLT)

Glue-laminated Timber 
(Glulam)
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Mass timber Can Reduce Embodied Carbon (EC)

[Figure from https://passivehouseaccelerator.com/articles/addressing-embodied-energy-with-mass-timber]
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Advantages

• Lightweight
• Prefabrication
• Reduced schedules
• Reduced site work
• Reduced environmental impact
• Inherent fire protection
• Appearance

[Photos from: Forest Products Laboratory]
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Disadvantages

• Walking-induced vibrations
• Poor acoustic insulation 
• Not well suited for large spans, seismic, 

sensitive needs like labs
• Limited North America manufacturers
• Learning curve
• Construction moisture protection
• Limited Design Guidance

[Figure from: WoodWorks]



Research Questions
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Limited guidance at intersection of EC and structural design

Structural 
design goals

Early design 
stage decision-

making

Embodied 
carbon goals



Introduction Methodology            Results            Conclusions

15 of 66 

For mass timber and hybrid mass timber floors… 

What are the trends in EC and structural design objectives?

How do they compare to baseline steel-reinforced concrete floor systems?

How do prescriptive fire design options affect EC and floor system depth?

What are the impacts of designing for improved acoustic insulation (STC/IIC) 

beyond code minimum for floors?



Floor systems, variables, limits states, and outputs

Methodology
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All-timber systems
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Hybrid-timber systems
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Baseline Concrete Floors
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Design space exploration  (DSE) uses parametric modeling to discover trends

[Figure adapted from Brown, 2020]
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Each design is automatically sized for the applicable limit states

[Figure adapted from Brown, 2020]



Introduction Methodology Results            Conclusions

22 of 66 

Protected        Combined         Exposed

Protected     Combined      Exposed

Protected/

Combined

Exposed

Fire design strategies modeled
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Char design option for fire



Introduction Methodology Results            Conclusions

24 of 66 

Timber carbon storage assumptions vary

0% Carbon storage assumed
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100% Carbon storage assumed

Timber carbon storage assumptions vary
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Limitations

• Focus on EC, not operational carbon

• Connections not included

• Focus on gravity loads

• Modeled a continuous single bay (appropriate for 3 bays minimum)

• Rough estimates for columns

• Residential Loads

• Mid-range representative wood species/grade

• Acoustic assembly self-weight not incorporated into parametric model

• Fire design prescriptive only

• Walking-induced vibrations simplified



Structural & EC, Concrete Comparisons, Fire Design, Acoustics

Results
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What are the trends in EC and structural design 

objectives for a variety of mass timber and hybrid 

mass timber floor systems?



Introduction Methodology            Results Conclusions

29 of 66 

Timber-framed systems
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Timber-framed systems

Steel-framed systems
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Timber-framed systems

Steel-framed systems

All-timber systems
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Timber-framed systems

Steel-framed systems

All-timber systems

Hybrid systems
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Timber-framed systems

Steel-framed systems

All-timber systems

Hybrid systems

Systems without infill beams
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Timber-framed systems

Steel-framed systems

All-timber systems

Hybrid systems

Systems without infill beams

Systems with infill beams



Introduction Methodology            Results Conclusions

35 of 66 

Floor system trends vary by metric and variable combinations

Depth

Mass

EC  
(75% Carbon 

Storage)
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Floor system trends vary by metric and variable combinations

Depth

Mass

EC  
(75% Carbon 

Storage)
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Timber-framed designs are ~1-2’deeper than steel-hybrid

Protected Combined Exposed
System
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Differences in systems depend on many variables

Depth

Mass

EC  
(75% Carbon 

Storage)
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At     spans, TG/TS are lightest; at     spans, TGb/TSb are lightest

Protected Combined Exposed
System
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Differences in systems depend on many variables

Depth

Mass

EC  
(75% Carbon 

Storage)
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Protected deigns have lowest EC in systems without infills

Protected Combined Exposed
System

(75% Carbon Storage)



Introduction Methodology            Results Conclusions

42 of 66 

Exposed designs have lowest EC in TGb system

Protected Combined Exposed
System

(75% Carbon Storage)



Introduction Methodology            Results Conclusions

43 of 66 

A single infill is typically preferred for TSb and TGb systems

Δ ~10-20 psf Δ ~5-10 psf

Δ ~10-15 psf
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How do mass timber and hybrid mass timber floor systems 

compare to baseline steel-reinforced concrete floor 

systems in relation to EC and structural design objectives?
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Concrete systems are 1-3’ shallower than mass timber systems

Δ ~1’

Δ ~2’

Δ ~2’
Δ ~3’
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Mass timber systems are much lighter than the concrete baselines

Δ ~20 psf

Δ ~170 psf
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Concrete baseline floors have an EC range of ~18-64 lb CO2 eq/ft2

CFP: 18-30 lb CO2

CVP: 30-55 lb CO2
Δ ~15

75% Carbon Storage 0% Carbon Storage
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Concrete flat plate has lower EC than TSb systems below 16’
(0% Carbon Storage)
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How do prescriptive fire design options affect EC 

and floor system depth for mass timber and 

hybrid mass timber floor systems?
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Fire design options are comparable in many scenarios

Protected

Combined

Exposed
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Fire design options are comparable in many scenarios

Protected

Combined

Exposed
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Changes in EC are most significant for infill systems
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Fire design options are comparable in many scenarios

Protected

Combined

Exposed
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>1’ difference at lowest spans for timber-framed systems
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How does designing for improved acoustic insulation 

beyond code minimum for floor assemblies affect 

mass timber EC and floor system depth?
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85 Acoustically-Tested CLT Floor Assemblies with EC Data
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Classifying sound insulation performance

Performance 

Tier
STC/IIC Description

Non-code-

compliant
<50

Clearly hear normal activities 

of neighbor

Code 

Minimum
50

Good 55-59

Better 60-64

Best 65+

Normal activities of neighbors 

are somewhat muted

Cannot hear normal activities 

of neighbor (in most cases)
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Concealed assemblies offer the greatest STC/IIC
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Concealed assemblies offer the greatest STC/IIC
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Concealed assemblies offer the greatest STC/IIC



Conclusions

Key Takeaways and Future Work
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Key Guidance

• Where EC is a priority, consider protected designs without infills or the exposed TGb 
designs for greater carbon storage using 75% carbon storage assumption.

• Where depth is a priority, consider selecting steel-framed designs, which can be 1-2’ 
shallower.
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Key Guidance

• Substitute with mass timber where appropriate to achieve lighter systems with lower EC 
as compared to common baseline concrete floors.

• Consider limiting designs to a single infill beam to reduce mass and EC.
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Key Guidance

• Carefully consider timber carbon storage assumptions, which affect design guidance

• To maximize acoustic insulation, consider under-ceiling treatment, and to improve 
insulation with balanced performance metrics, consider wooden sleepers
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Future Work – AIA Design Guide and Web Tool
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Brock Commons under 
Construction: Timber 
floor and frame with 
concrete cores
[Photo from: Think Wood]

Discussion 

+ Questions

U.S. DESIGN GUIDANCE FOR CLT 

FLOOR SYSTEMS WITH RESIDENTIAL 

AND OFFICE OCCUPANCY LOADS

sleonard@rdh.com

ncb5048@psu.edu
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