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About RDH FOUNDED IN 1997

BUilding Science RDH is a building science consulting and engineering firm
delivering climate-responsive solutions across North
America. Our network of building science professionals spans 11 offices.



About RDH Building Science

Our Services
and Capabilities

Building Enclosure

Facade Engineering
- Design Consulting

- System Development

- Construction Administration - Advanced Analytics

- Construction Management - Structural Engineering

- Building Commissioning

Energy & Climate

- Passive House

Asset Management

- Asset Planning

- Energy Modeling - Assessments

- Carbon Strategy - Forensics

- Litigation and Claims

Research, Policy & Training

- Product Development

- Policy Development
- Lab Testing & Monitoring

- Industry Training + Publications



Learning Objectives

e Discover how parametric modelling generates data for the early-stage
design of mass timber floor structures.

* Understand how design decisions related to floor structure type and
layout, bay size, and prescriptive fire design strategy affect design
goals.

e Learn how mass timber floor systems perform for embodied carbon,
structural design, and acoustic insulation.

* Apply early-stage design guidance to mass timber floor structures.
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Presentation Overview

Introduction
Research Questions
Methods

Results

Conclusions
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Introduction

Mass timber in construction, pros and cons, existing tools
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What is Mass Timber?

"Large" engineered wood products built up from smaller elements

[Photos from: StructureCraft] 8 of 66
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Mass Timber Structural Elements

Cross Laminated Timber Glue-laminated Timber
(CLT) (Glulam)

[Photos from: Engineering News Record and StructureCraft] 9 of 66
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Mass timber Can Reduce Embodied Carbon (EC)

Life Cycle Clobal Warming Potential: Passive House & Mass Timber
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[Figure from https://passivehouseaccelerator.com/articles/addressing-embodied-energy-with-mass-timber] 10 of 66
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Advantages

* Lightweight

* Prefabrication

* Reduced schedules

* Reduced site work

* Reduced environmental impact
* Inherent fire protection

* Appearance

« § ~~A‘A< :
B Y -

Fig. 20-4. After fire scene. Shows a wood beam supporting
twisted steel |[-beams. (Forest Products Laboratory)

[Photos from: Forest Products Laboratory] 11 of 66
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Disadvantages

* Walking-induced vibrations

e Poor acoustic insulation

* Not well suited for large spans, seismic,
sensitive needs like labs

e Limited North America manufacturers

* Learning curve

* Construction moisture protection

* Limited Design Guidance

[Figure from: WoodWorks] 12 of 66
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Research Questions




Limited guidance at intersection of EC and structural design

Embodied
carbon goals

Structural
design goals

Early design
stage decision-
making
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For mass timber and hybrid mass timber floors...

What are the trends in EC and structural design objectives?
QQ How do they compare to baseline steel-reinforced concrete floor systems?
® How do prescriptive fire design options affect EC and floor system depth?

What are the impacts of designing for improved acoustic insulation (STC/IIC)
W

beyond code minimum for floors?
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Methodology

Floor systems, variables, limits states, and outputs
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All-timber systems

TG TGb
Timber Floor with Timber Floor with Timber
Timber Girders Girders and Beams
CLT Floor

Key

[ Concrete

[ Timber

Fireproofing

7 Steel

B Connections
CLT Spanning
Direction

*depth = topping + CLT panel +
max framing depth + fireproofing
**Bay width assigned to girder's
spanning direction
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Hybrid-timber systems

TS TSb TCC
Timber Floor with Timber Floor with Steel Timber-Concrete
Steel Girders Girders and Beams Composite

Shear
/| Connectors

CLT Floor Structural Topping
Infill Beams

Girder

Key

[ Concrete

[ Timber

Fireproofing

7 Steel

B Connections
CLT Spanning
Direction

*depth = topping + CLT panel +
max framing depth + fireproofing
**Bay width assigned to girder's
spanning direction
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Baseline Concrete Floors

CFP CvVP
Concrete Flat Plate Concrete Voided Plate

Reinforced
Concrete Slab

Key

[ Concrete

[ Timber

Fireproofing

7 Steel

B Connections
CLT Spanning
Direction

*depth = topping + CLT panel +
max framing depth + fireproofing
**Bay width assigned to girder's
spanning direction
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Design space exploration (DSE) uses parametric modeling to discover trends
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Each design is automatically sized for the applicable limit states

7 Flexure
JE— _ .~ .—-7 Shear

R
--------- . P 1
R el > Deflections/Creep
BRI ~._ > Fire Protection
% . P \‘--.._
* e = Walking-Induced Vibrations

-
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Design Variable 1

Design Variable 2

Design Space

[Figure adapted from Brown, 2020] 21 of 66
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Fire design strategies modeled

CLT Floor

g
[ 0 [120] 0] E

—
Protected Combined  Exposed
Key
[oTi20[ 0] [40 30T 0] [i20f 0 0] [0 J120] 0] [ = Core Layer
[] = Inner Tension Layer
: Protected/ Exposed .
Protected Combined Exposed : B - Outer Tension Layer
Combined B -5t
Timber] Gypsum |Intum material contribution to a = Gypsum (Drywall) Protection
. . = 2-hour Fire Resistance I Pai
Char JProtection] Paint Rating (FRR) in minutes. ftmescent Faint
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Char design option for fire

Original 5-ply CLT Section

Key
[ ] = Core Layer
[ ] = Inner Tension Layer
I = Outer Tension Layer

Charred Section Assumed Remaining Section
for Calculations

Protective Char
and heated zone Original section's inner

(zero strength) tension layer must resist
fire design loads
Section Loss
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Timber carbon storage assumptions vary

0% Carbon storage assumed

Environmental =) strucTurLAM
Product Mf SSSSSSSSSSSSSSSSSSS
Declaration PR
CROSSLAMCLT

EPD for Cross Laminated Timber produced by Structurlam in Okanagan Falls, BC

. . Industry-Focused EC Material Academic-Focused EC
Material Information Coefficients Material Coefficients
Material Mr&r@ EC Data Source EC Data Source
Assumptions Falue Falue
Carbon storage is 027 Average of five North 0.437
Cross Laminated neglected ‘mﬁlﬁﬁigg D’s ICE V3.0 [28] -
fimber (CLT) Carbonstorageis | | o 219302017 AandB | - LwbenCLT
mcluded” ' [31]-33] ’
Carhnnlstgt[adge 15 025 Amencan Wood Council 0512
Glued Laminated neglects EPD for North American ICE V3.0 — Timber,
Tomber (Glulam)  (orbon storase | Glued Larinated Timber Glulam
g 15
o ded 104 [36] -0.90
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Timber carbon storage assumptions vary

Environmental
Product

sssssssssssssssssssss

Declaration
100% Carbon storage assumed CROSSLAMCLT
. . Industry-Focused EC Material Academic-Focused EC
Material Information Coefficients Material Coefficients
Marterial Mr&r@ BC Data Source BC Data Source
Assumptions Value Falue
Carbon storage is 027 Average of five North 0.437
Cross Laminated neglected ""“‘Eﬁﬁigsﬁ D’s ICE V3.0 [28] -
fimber (CLT) Carbonstorageis | o | 219302017 AandaB | ., | TmbenCLT
included’ ' [311-33] '
Carhnnlstgt[adge 15 0.25 American Wood Councal 0512
Glued Laminated nezlects EPD for North American ICE V3.0 — Timber,
Timber (Glulam) : Glued Laminatad Timber Glulam
Carhjl?: stma__ge I3 104 361 0.90
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Limitations

* Focus on EC, not operational carbon

* Connections not included

* Focus on gravity loads

* Modeled a continuous single bay (appropriate for 3 bays minimum)

* Rough estimates for columns

* Residential Loads

* Mid-range representative wood species/grade

* Acoustic assembly self-weight not incorporated into parametric model
* Fire design prescriptive only

* Walking-induced vibrations simplified
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Results

Structural & EC, Concrete Comparisons, Fire Design, Acoustics
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What are the trends in EC and structural design
objectives for a variety of mass timber and hybrid

mass timber floor systems?
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Timber-framed systems
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Timber-framed systems

Steel-framed systems
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Timber-framed systems
Steel-framed systems

All-timber systems
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Timber-framed systems
Steel-framed systems

All-timber systems

Hybrid systems
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Timber-framed systems
Steel-framed systems
All-timber systems

Hybrid systems

Systems without infill beams
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| * Timber-framed systems

Steel-framed systems
All-timber systems

Hybrid systems

Systems without infill beams

Systems with infill beams
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Floor system trends vary by metric and variable combinations

Depth

Mass

EC

(75% Carbon
Storage)
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Floor system trends vary by metric and variable combinations

Depth

Mass

EC
(75% Carbon
Storage)
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Timber-framed designs are ~1-2'deeper than steel-hybrid
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Differences in systems depend on many variables
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At {spans, TG/TS are lightest; at 1 spans, TGb/TSb are lightest
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Differences in systems depend on many variables

Depth

Mass

EC
(75% Carbon
Storage)
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Protected deigns have lowest EC in systems without infills

(75% Carbon Storage)
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Exposed designs have lowest EC in TGb system

(75% Carbon Storage)
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A single infill is typically preferred for TSb and TGb systems
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System = TSb
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NP

How do mass timber and hybrid mass timber floor systems

compare to baseline steel-reinforced concrete floor

systems in relation to EC and structural design objectives?
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Concrete systems are 1-3’ shallower than mass timber systems
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Mass timber systems are much lighter than the concrete baselines
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Concrete baseline floors have an EC range of ~18-64 Ib CO, eq/ft?

75% Carbon Storage 0% Carbon Storage
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Concrete flat plate has lower EC than TSb systems below 16’

(0% Carbon Storage)
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How do prescriptive fire design options affect EC
and floor system depth for mass timber and

hybrid mass timber floor systems?
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Fire design options are comparable in many scenarios

TCC System = TCC System = TG System = TGh System = TS System = TSb
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Fire design options are comparable in many scenarios
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Changes in EC are most significant for infill systems
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Fire design options are comparab
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e in many scenarios
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Total Depth [ft]

_ System = TG

System = TGh

System = TS

difference at lowest spans for timber-framed systems
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How does designing for improved acoustic insulation
beyond code minimum for floor assemblies affect

mass timber EC and floor system depth?
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85 Acoustically-Tested CLT Floor Assemblies with EC Data
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. , Concrete or , Raised
- . Ceiling side Concrete or No concrete ) Raised
Ceiling side CLT-concrete gypsum Raised access wooded
Category concealed; gypsum . or gypsum wooded
concealed 16 toobin topbin topping w/ topbin floor sleepers sleepers;
PRIng PRing finish floor PRIng P no topping
Typical | Glaeacay | [ ot || | [e—— g
Construction — i
# Studied
N “:f. 25 17 7 13 3 7 5 2
Assemblies
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Classifying sound insulation performance
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Perf

.er ormance STC/IIC |Description
Tier
Non-code- <50 Clearly hear normal activities
compliant of neighbor
Cod

9 ? 50 Normal activities of neighbors
Minimum

are somewhat muted

Good 55-59
Better 60-64 |Cannot hear normal activities
Best 65+ |of neighbor (in most cases)
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Concealed assemblies offer the greatest STC/IIC
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Ceiling Side Concealed

Ceiling Side Concealed (no Topping)
CLT-Concrete Composite
Concrete/Gypsum Topping
Concrete/Gypsum Topping w/ Flooring
GLT Decking

NLT Decking

No Concrete/Gypsum Topping

Raised Access Floor

Raised Wooden Sleepers

Raised Wooden Sleepers (no Topping)
T&G Decking
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Concealed assemblies offer the greatest STC/IIC ]
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Concealed assemblies offer the greatest STC/IIC
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Key Guidance

Where EC is a priority, consider protected designs without infills or the exposed TGb
designs for greater carbon storage using 75% carbon storage assumption.

Protected Combined Exposed
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Where depth is a priority, consider selecting steel-framed designs, which can be 1-2’
shallower.
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Key Guidance

e Substitute with mass timber where appropriate to achieve lighter systems with lower EC
as compared to common baseline concrete floors.

300
o Systel
6
4 250 === TCC
-------- TG
- = s —
= Z ~ 3T - TG
z, Z 200 A ~170 pSf £ TGb
2 : = @ == TS
= § oo
& = i) TSh
= " 150 —o
% I iz A ~15 cre
= = ¢ == VP
100 o
’ ~
I aA~1 A ~20 psf e, L
sof mom __:E;:—_J:w [ | M
sl a1 I RS RN W i e T T Lig lisaaly 25 30 35 40
10 15 20 25 30 3s 40 10 Tis 20 25 30 35 40 Bay Length [ft]
Bay Length [ft] Bay Length [ft]

* Consider limiting designs to a single infill beam to reduce mass and EC.
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Key Guidance

e Carefully consider timber carbon storage assumptions, which affect design guidance

0% Carbon Storage 75% Carbon Storage
r System
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* To maximize acoustic insulation, consider under-ceiling treatment, and to improve
insulation with balanced performance metrics, consider wooden sleepers
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uture Work — AlA Design Guide and Web Tool
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¥ Sample bay design configurations

Infill Beams

Nonstructural topping
CLT Floor

Infill

Rectangular bay, gypsum board protection. mulliple infill beams

e

Rectangular bay, exposed
4 structure, multiple infll beams

Square bay, gypsum board
protection. single infill beam

System Description

E8HERERRRRE

Deepest Heaviest Highest  [o=
Key to to to iy
Shalowest [0 Lightest || Lowest

pennstate R N\ BiitBNG Citnces

In this system, CLT floor panels span between infill
beams spaced throughout the bay. Glulam infill beams
span between girders located at each end of the bay,

and Gl

lulam girders span the bay width. Non-structural

conerele lopping is provided for acoustic insulation and
to control walking-induced vibrations. Where
non-combustible protection is used, drywall is installed
directly against the underside of the CLT panels and

wraps

the girders and beams

Bay aspect ratio configurations: [L:W]
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Brock Commons under
Construction: Timber
floor and frame with

concrete cores
[Photo from: Think Wood]
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