

Bret Lizundia, S.E., Rutherford + Chekene

BSSC

Learning Objectives

Building Seismic Safety Council

😸 FEMA

Building Seismic Safety Council

- Understand the role of the NEHRP Provisions in seismic code development
- Gain an awareness of seminal past seismic code changes

nehrp

- Understand key updates to the 2020 NEHRP Provisions and to ASCE/SEI 7-22
- Understand what is contained in the 2020 Design Examples and how the document can be used

Acknowledgement: Images are taken from FEMA P-2192-V1 and FEMA P-2192-V2 unless otherwise noted.

Main Committee	Issue Teams
23 voting members	IT 1 - Seismic Performance Objectives
7 non-voting advisors	IT 2 - Seismic Resisting Systems and Design Coefficients
	IT 3 - Modal Response Spectrum Analysis
	IT 4 - Shear Wall Design
	IT 5 - Nonstructural Components
	IT 6 - Nonbuilding Structures
	IT 7 - Soil Foundation Interaction
	IT 8 - Base Isolation and Energy Dissipation
	IT 9 - Diaphragm Issues
	IT 10 - Seismic Design Maps (Project '17)
·····	

2020 NEHRP Provisions Organization

Building Seismic Safety Council ~ (nehrp

🕃 FEMA

Part 1: Provisions

To introduce new provisions and modifications to improve current requirements in ASCE/SEI 7-16

Part 2: Commentary

A detailed commentary that corresponds to ASCE/SEI 7 and provides useful explanations and guidance on implementation

Part 3: Resource Papers

Introduce new technologies, procedures, and systems for use by design professionals on a provisional basis

> Slide adapted from Bonneville and Yuan (2019) SEAOC presentation

<u>1</u>0

History and Role of the NEHRP Provisions

Highlights of Major Changes in the 2020 NEHRP Provisions and in ASCE/SEI 7-22

Highlights of Major Changes to 2020 NEHRP Provisions and ASCE/SEI 7-22

- Updated earthquake design ground motions, site classes, and determination of spectral acceleration parameters
- Addition of three new shear wall seismic force-resisting systems
- Addition of provisions and alternative procedures for diaphragm design
- Relaxed modal response spectrum analysis requirements
- Revisions in configuration irregularity requirements
- Revisions in displacement requirements
- Changes in the nonbuilding structures provisions
- Addition of quantitative reliability targets for individual members and essential facilities
- A Part 3 paper on how to apply the NEHRP Provisions for improved seismic resiliency
- A Part 3 paper on a new approach to seismic lateral earth pressures
- Soil-structure interaction provision definitions for different types of shear wave velocities were clarified
- Significant update of the nonstructural components chapter and the forces used for design

Revisions in Displacement Requirements Definitions and graphics developed to include diaphragm deformation in displacements related to deformation compatibility, structural separation, and at members spanning between structures. Increase in drift used to check deformation compatibility. PLAN VIEW THREE-DIMENSIONAL VIEW Part 3 resource paper on issues and available research Design Earthquake displacement and design story drift on whether to amplify drifts by (from FEMA P-2082-1, Figure C12-8.1) C_d or R. Building Seismic Safety Council nehrp FEMA 27

Addition of Quantitative Reliability Targets for Individual Members and Essential Facilities

- Section 1.1.1 of 2020 NEHRP Provisions adds individual member/connection reliability targets to previously available building collapse reliability targets.
- Section 2.1.5 of 2020 NEHRP Provisions states:
 "A desired target reliability for Risk Category IV buildings and nonbuilding structures is for there to be a 10% probability of loss of essential function given the Design Earthquake ground motion."

Building Seismic Safety Council

nehrp

FEMA

	Probabili	ty of Collapse
Risk Category ¹	Given MCE _R Shaking	In 50 years*
I	**	**
П	10%	1%
III	5%	less than 1%
IV	2.5%	less than 1%

	Conditional Probabi	Conditional Probability of Failure for Member or Connection					
Risk Category ¹	Given DE Shaking	Given MCE _R Shaking					
I	**	**					
П	10%	25%					
III	5%	15%					
IV	2.5%	9%					

From FEMA P-2082-1

Chapter 2 (Section 2.1 to 2.6) - Fundamentals

Chapter 2 - Fundamentals (Harris): Topics

~ (nehrp

- Fundamental Concepts
- Ground Motions and Their Effects
- Structural Dynamics of Linear SDOF Systems
- Response Spectra
- Structural Dynamics of Simple MDOF Systems
- Inelastic Behavior
- Structural Design

FEMA Mulding Seismic Safety Council

Subduction zone tectonic environment

Image from E.V. Leyendecker, USGS

	Technic	About the physical building al • Structure • Nonstructural systems
Facility		Community
About one building. Typical context for:EngineeringBuilding code implementation		About the group. Typical context forPlanningPublic policy
From Meister Consultants Group (2017)	Holisti	About more than a building c • Contents → Use, Occupancy • Purpose
FEMA M Building Seismic		46

Chapter 3 – Earthquake Ground Motions

- Interplay between the USGS hazard models and the BSSC PUC requirements
- The 2018 USGS National Seismic Hazard Model (NSHM) for Conterminous U.S.
 - Ground motion models in CEUS (e.g. NGA-East)
 - Deep basin effects in WUS
- Outside of the Conterminous U.S. (HI, AK, PRVI, GNMI, AMSAM)

Section 3.2 - Deterministic Caps

FEMA M Building Seismic Safety Council

21.2.2 Deterministic (MCE_R) Ground Motions

~ (nehrp

The deterministic spectral response acceleration at each period shall be calculated as an 84th-percentile 5% damped spectral response acceleration in the direction of maximum horizontal response computed at that period. The largest such acceleration calculated for the characteristic scenario earthquakes on all known active faults within the region shall be used. The scenario earthquakes shall be determined from deaggregation for the probabilistic spectral response acceleration at each period. Scenario earthquakes contributing less than 10% of the largest contributor at each period shall be ignored.

≈USGS

Federal Emergency Management Agency

	ASCE/S	SEI 7-10	ASCE/S	SEI 7-16	2020 Pi	rovisions
Location Name	<i>S</i> _S (g)	S_{MS} (g)	<i>S</i> _S (g)	S_{MS} (g)	<i>S</i> _S (g)	S _{MS} (g
Los Angeles, CA	2.40	2.40	1.97	2.36	2.25	2.37
Century City, CA	2.17	2.17	2.11	2.53	2.37	2.49
Northridge, CA	1.69	1.69	1.74	2.08	2.09	2.26
Long Beach, CA	1.64	1.64	1.68	2.02	1.90	2.03
Irvine, CA	1.55	1.55	1.25	1.50	1.43	1.68
Riverside, CA	1.50	1.50	1.50	1.80	1.50	1.67
San Bernardino, CA	2.37	2.37	2.33	2.79	2.78	2.97
San Luis Obispo, CA	1.12	1.18	1.09	1.31	1.23	1.45
San Diego, CA	1.25	1.25	1.58	1.89	1.74	1.80
Santa Barbara, CA	2.83	2.83	2.12	2.54	2.37	2.44
Ventura, CA	2.38	2.38	2.02	2.42	2.25	2.38

	determined from Tal Acceleration Paramete	e default site c ble 11.6-1 ("S r") alone, but	c design cat lass and ris Seismic De only where	tegories from t sk categories I, sign Category <i>S</i> ₁ <0.75g.	hese <i>Prov.</i> II, or III. Based of	isions, ASCE/SI The "SDC _s " ca on Short-Perio	<i>EI 7-16</i> , and tegories are 1 Response	
		ASCE/S	EI 7-10	ASCE/S	EI 7-16	2020 Pro	visions	
	Location Name	"SDC _s "	SDC	"SDC _s "	SDC	"SDC _s "	SDC	
	Los Angeles, CA	N/A	E	→ D →	D	D	D	
	Century City, CA	N/A	E	N/A	E	N/A	E	
		>	D	D	D	D	D	
From ASCE 7-10	to ASCE 7-16,	Þ	D	D	D	N/A	E	
SDC decreases a	at 2 of 34 locatio	ns. 🍋	D	D	D	D	D	
from E to D		, ,	D	D	D		I	
		A	E	N/A	E	From ASC	E 7-16	to 2020 Provisions.
	San Diago CA		D	D	D	SDC incre	acoc at	1 of 31 locations
	Santa Barbara CA	N/A	E		E			-1003+1000000000,
	Ventura CA	N/A N/A	F	N/A N/A	E	from D to	E, most	ly due to determinis
						capping a	ind basi	n ettects.

Section 3.2 - Examples of Changes in MCE_R Values

/m BSSC 1001 for 202	20 NEHRP Provi × +		-	٥	1
$\leftarrow \rightarrow $ C	https://www.wbdg.org/additional-resources/tools/bssc2020nehrp \[\]	î₀ î ≡	Ē	₽	
/\\\	WBDG Whole Building Design Guide CREATE ACCOUNT LOG N	N S	EARC	н	
DESIGN RECO	I DIMMENDATIONS 🗸 PROJECT MANAGEMENT - 0 & M 🖉 FEDERAL FACILITY CRITERIA 🗸 CONTINUING EDUCATION 🗸 ADDITIONAL RESC	URCES			
			-		
*	ADDITIONAL RESOURCES / TOOLS / BSSC TOOL FOR 2020 NEHRP PROVISIONS SEISMIC DESIGN MAP VALUES				
*	ADDITIONAL RESOURCES / TOOLS / BSSC TOOL FOR 2020 NEHRP PROVISIONS SEISMIC DESIGN MAP VALUES				
*	ADDITIONAL RESOURCES / TOOLS / BSSC TOOL FOR 2020 NEHRP PROVISIONS SEISMIC DESIGN MAP VALUES BSSC Tool For 2020 NEHRP Provisions Seismic				
*	ADDITIONAL RESOURCES / TOOLS / BSSC TOOL FOR 2020 NEHRP PROVISIONS SEISMIC DESIGN MAP VALUES BSSC Tool For 2020 NEHRP Provisions Seismic Design Map Values				

	Site Class	Shear Wa	ve Velocity	, V _{s30} (fps)	USGS
Name	Description	Lower Bound ¹	Upper Bound ¹	Center	V _{s30} (mps)
А	Hard rock	5,000			1,500
В	Medium hard rock	3,000	5,000	3,536	1,080
BC	Soft rock	2,100	3,000	2,500	760
С	Very dense soil or hard clay	1,450	2,100	1,732	530
CD	Dense sand or very stiff clay	1,000	1,450	1,200	365
D	Medium dense sand or stiff clay	700	1,000	849	260
DE	Loose sand or medium stiff clay	500	700	600	185
Е	Very loose sand or soft clay		500		150
EMA	1. Up 2. Ce de Safety Council	oper and low enter of rang evelop MPRS	er bounds, e (rounded) S.	Table 20.3-) values use	1, ASCE

Section 3.3 - MPRS Format	Period	5% -Dam	ped Resp	onse Spe	ctral Acce	leration or	PGA by S	ite Class (g)
	T (s)	Α	В	BC	С	CD	D	DE	E
	0.00	0.501	0.565	0.658	0.726	0.741	0.694	0.607	0.54
	0.010	0.503	0.568	0.662	0.730	0.748	0.703	0.617	0.54
	0.020	0.519	0.583	0.676	0.739	0.749	0.703	0.617	0.547
Values available for	0.030	0.596	0.662	0.750	0.792	0.778	0.703	0.617	0.547
conterminous US regions	0.050	0.811	0.888	0.955	0.958	0.888	0.758	0.620	0.551
	0.075	1.040	1.142	1.214	1.193	1.076	0.900	0.713	0.624
with around motion models	0.10	1.119	1.252	1.371	1.368	1.241	1.040	0.825	0.724
for all combinations of 22	0.15	1.117	1.291	1.535	1.606	1.497	1.266	1.002	0.875
IOF all complitations of ZZ	0.20	1.012	1.194	1.500	1.710	1.662	1.440	1.153	1.010
periods and 8 site classes	0.25	0.897	1.075	1.397	1.714	1.766	1.584	1.299	1.153
	0.30	0.810	0.976	1.299	1.665	1.829	1.705	1.443	1.301
	0.40	0.689	0.833	1.138	1.525	1.823	1.802	1.607	1.484
	0.50	0.598	0.724	1.009	1.385	1.734	1.803	1.681	1.596
	0.75	0.460	0.536	0.760	1.067	1.407	1.566	1.598	1.589
	1.0	0.368	0.417	0.600	0.859	1.168	1.388	1.512	1.578
	1.5	0.261	0.288	0.410	0.600	0.839	1.086	1.348	1.540
	2.0	0.207	0.228	0.309	0.452	0.640	0.877	1.192	1.458
	3.0	0.152	0.167	0.214	0.314	0.449	0.632	0.889	1.111
	4.0	0.120	0.132	0.164	0.238	0.339	0.471	0.655	0.815
	5.0	0.100	0.109	0.132	0.188	0.263	0.359	0.492	0.607
	7.5	0.063	0.068	0.080	0.110	0.148	0.194	0.256	0.311
	10	0.042	0.045	0.052	0.069	0.089	0.113	0.144	0.170
	PGA G	0.373	0.429	0.500	0.552	0.563	0.527	0.461	0.416

Section 3.3 - New Site Classes and Associated Values of Shear Wave Velocities (Table 2.2-1, FEMA P-2078, June 2020)

Chapter 5 – Coupled Composite Plate Shear Walls/Concrete Filled (C-PSW/CF)

Chapter 5 – Coupled Composite Plate Shear Walls / Concrete Filled (Shafaei and Varma): Topics

- Introduction to Coupled C-PSW/CFs
- Section detailing, limits, and requirements
- Seismic behavior and capacity design
- Design example
 - Overall demands
 - Coupling beams

FEMA Mulding Seismic Safety Council

- □ C-PSW/CF
- Connection of beams to C-PSW/CF

~ (nehrp

Chapter 6 – Cross-Laminated Timber Shear Walls

Chapter 6 - Cross-Laminated Timber (CLT) Shear Wall (Line and Amini): Topics

- This example features the seismic design of crosslaminated timber shear walls used in a three-story, six-unit townhouse cross-laminated timber building of platform construction
- The CLT shear wall design in this example includes:
 - Check of CLT shear wall shear strength

FEMA M Building Seismic Safety Council

- Check of CLT shear wall hold-down size and compression zone length for overturning
- Check of CLT shear wall deflection for conformance to seismic drift

nehrp

Chapter 7 – Horizontal Diaphragm Design

Chapter 7 – Horizontal Diaphragm Design (Cobeen): Topics

- All diaphragm seismic design methods
 - Sections 12.10.1 and 12.10.2 Traditional Diaphragm Design Method (in ASCE/SEI 7-10)
 - Section 12.10.3 Alternative Design Provisions is added (added in ASCE/SEI 7-16)
 - Cast-in-place concrete, precast concrete, and wood structural panel diaphragms
 - Section 12.10.3 Alternative Design
 Provisions is expanded (in ASCE/SEI 7-22)
 - Bare steel deck, concrete-filled steel deck diaphragms
 - Section 12.10.4 Alternative RWFD Provisions is added (in ASCE/SEI 7-22)

- Design examples
 - Determination of diaphragm design forces
 - One-story wood assembly hall
 - One-story bare steel deck diaphragm building
 - Multi-story steel building with steel deck diaphragms

Organization and Presentation of the Design Example Chapters

Outline of the 2020 Design Examples Chapters

- Chapter 1: Introduction
- Chapter 2: Fundamentals
- Chapter 3: Earthquake Ground Motions
- Chapter 4: Ductile Coupled Reinforced Concrete Shear Walls
- Chapter 5: Coupled Composite Plate Shear Walls/Concrete Filled
- Chapter 6: Three-Story Cross-Laminated Timber (CLT) Shear Wall
- Chapter 7: Horizontal Diaphragm Design
- Chapter 8: Nonstructural Components

Topic	2015 Design Examples and ASCE/SEI 7-16	2020 Design Examples and ASCE/SEI 7-22
Fundamentals	Chapter 2 – Summary of fundamentals of earthquake engineering	Chapter 2 – Summary of fundamentals of earthquake engineering, updated from 2015 Design Examples.
Seismic Resilience	Not covered in 2015 Design Examples. Use 2020 Design Examples.	Section 2.7 – Summarizes application of resilience design to the NEHRP Provisions and includes a CLT case study.
Earthquake Ground Motion	Chapter 3 – Provides basis for Risk Targeted design maps, discusses hazard assessment, site specific spectra, and ground motion selection and scaling. <u>Selection and scaling</u> <u>discussion are still generally applicable with ASCE/SEI 7-</u> 22. Use 2020 Design Examples otherwise.	Chapter 3 – Summarizes basis for new design maps, addition of more site classes, major update from two-period spectra to multi-period spectra, and update on vertical ground motion.
Linear Analysis	Chapter 4 – Design examples with equivalent lateral force procedure, modal response spectrum analysis, and new linear response history analysis. <u>Applicable with ASCE/SEI</u> 7-22.	Not covered in 2020 <i>Design Examples</i> . See Section 1.4 of this Chapter on relaxation of modal response spectrum analysis requirements.
Nonlinear Response History Analysis (NRHA)	Chapter 5 – Design example using NRHA for a tall reinforced concrete shear wall building. <u>Applicable with</u> ASCE/SEI 7-22.	Not covered in 2020 Design Examples.
Diaphragm Analysis	Chapter 6 – Design examples comparing traditional and new alternate methods. <u>Use the 2020 Design Examples.</u>	Chapter 7 – Design examples showing all diaphragm analysis methods including new methods introduced with the 2020 <i>NEHRP Provisions</i> . Diaphragm design for precast diaphragms has been moved out of ASCE/SEI 7-22 to ACI publications, and this is discussed.

Торіс	2015 Design Examples and ASCE/SEI 7-16	2020 Design Examples and ASCE/SEI 7-22
Foundation and Liquefaction	Chapter 7 – Design examples for shallow and deep foundations and for foundations on liquefiable soil. Applicable with ASCE/SEI 7-22.	Not covered in 2020 Design Examples.
Soil-Structure Interaction (SSI)	Chapter 8 – Design example of a four-story reinforced concrete shear wall building with and without SSI. Applicable with ASCE/SEI 7-22.	No examples in 2020 <i>Design Examples</i> . See Section 1.4 of this Chapter for discussion on changes to SSI provisions in ASCE/SEI 7-22.
Structural Steel	Chapter 9 – Design examples for a high-bay warehouse with an ordinary concentric braced frame and an intermediate moment frame and for an office building with a special steel moment frame and a special concentric braced frame. Applicable with ASCE/SEI 7-22.	Not covered in 2020 Design Examples.
Reinforced Concrete	Chapter 10 - Design examples for an intermediate moment frame, a special moment frame, and special concrete shear walls. <u>Applicable with ASCE/SEI 7-22</u> .	Chapter 4 – Design example for a new reinforced concrete ductile coupled wall.
Precast Concrete	Chapter 11 – Design examples for precast diaphragms, intermediate precast concrete shear walls, tilt-up concrete, and precast special moment frame. <u>Applicable with</u> <u>ASCE/SEI 7-22</u> .	Not covered in 2020 Design Examples.
Composite Steel and Concrete	Chapter 12 – Design example of composite partially restrained moment frame. Applicable with ASCE/SEI 7-22.	Chapter 5 – Design example for a new steel and concrete coupled composite plate shear walls.

Торіс	2015 Design Examples and ASCE/SEI 7-16	2020 Design Examples and ASCE/SEI 7-22
Masonry	Chapter 13 – Design examples for two reinforced masonry bearing wall buildings. <u>Applicable with ASCE/SEI 7-22.</u>	Not covered in 2020 Design Examples.
Wood	Chapter 14 – Design examples for an apartment, wood roof diaphragm and roof-to-wall anchorage in a masonry building. <u>Use the 2020 Design Examples for wood</u> diaphragms.	Chapter 6 – Design example for new cross-laminated timber shear wall system.
Seismic Isolation	Chapter 15 – Design example of an essential facility with lead rubber bearings using the significantly revised isolation provisions. Applicable with ASCE/SEI 7-22.	Not covered in 2020 Design Examples.
Damping	Chapter 16 – Design example of fluid viscous dampers in a steel moment frame building. <u>Applicable with ASCE/SEI 7-</u> 22.	Not covered in 2020 Design Examples.
Nonbuilding Structures	Chapter 17 – Design examples for pipe racks, industrial storage rack, power generating plant, pier, storage tanks, and tall vertical storage vessel. <u>Applicable with ASCE/SEI 7-22.</u>	No examples in 2020 Design Examples. See Section 1.4 for discussion on changes to nonbuilding structures in ASCE/SEI 7-22.
Nonstructural Components	Chapter 18 – Design examples for precast cladding, egress stair, roof fan anchorage, piping system, and elevated vessel. <u>Use 2020 Design Examples.</u>	Chapter 8 – Background on development of new design equations and other changes, plus design examples for precast cladding, egress stair, roof fan anchorage, piping system, and elevated vessel.

DISCLAIMER

- NOTICE: Any opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of the Federal Emergency Management Agency. Additionally, neither FEMA nor any of its employees make any warranty, expressed or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process included in this publication.
- The opinions expressed herein regarding the requirements of the NEHRP Recommended Seismic Provisions, the referenced standards, and the building codes are not to be used for design purposes. Rather the user should consult the jurisdiction's building official who has the authority to render interpretation of the code.
- This set of training materials is intended to remain complete in its entirety even if used by other presenters. If the training materials are excerpted in part for use in other presentations, we ask users to provide a reference/citation to this document and related chapter authors and acknowledge the possibility of incomplete interpretation if only part of the material is used.

