Chapter 5 Seismic Design of Coupled Composite Plate Shear Walls / Concrete Filled (C-PSW/CF)

2020 NEHRP Provisions Training Materials
Soheil Shafaei, Ph.D., Purdue University
Amit H. Varma, Ph.D. Purdue University

Topics Covered

- Introduction to Coupled C-PSW/CFs (SpeedCore System)
- Section Detailing, Limits, Requirements
- Seismic Behavior & Capacity Design
- Design Example
Introduction to Coupled C-PSW/CFs (SpeedCore System)

C-PSW/CF (SpeedCore System)

Composite Plate Shear Walls – Concrete Filled (C-PSW/CF)

- Steel plates
- Concrete infill
- Tie bars
- Shear studs
- No rebars or formwork

- Shear walls and/or elevation core walls

(Shafaei et al., 2021)
A New Chapter in Composite Construction

Rainier Square, Seattle

- Client
- Architect
- Structural & Civil
- GC/GM

Steel Fabricator:

Steel Erector:

Rebar Fabricator:

Concrete Supplier:

Courtesy of Magnusson Klemencic Associates
A New Chapter in Composite Construction

Cover of ENR Magazine

- Constructed in 10 months
- Eight months savings as compared to conventional RC construction
- 1.4 million square feet
- 850-feet tall
- 58-story office + residential
- 7 levels below-grade parking

Coupled Composite Plate Shear Walls – Core Walls

Courtesy of Magnuson Klemencic Associates
A New Chapter in Composite Construction

200 Park Avenue, San Jose, CA
- High seismic region
- 937,000 square foot
- 19 stories
- Under construction

Copyright Gensler
(Modern Steel Construction, February 2021)

Section Detailing, Limits, Requirements
Key Components of C-PSW/CF (SpeedCore System)

- Steel plates
- Concrete infill
- Tie bars
- Shear studs

Steel Plates

- Reinforcement ratio limits:
 Minimum = 1% Maximum = 10%

- Two steel plates must be connected to each other using ties

- Ties can consist of bars, steel shapes, or built-up shapes

- Steel plates must be anchored to concrete infill using stud anchors or ties or combination of ties and studs
Local buckling, Plate Slenderness, Axial Compression

Seismic Design:

\[
\frac{b}{b_p} \leq 1.05 \frac{E_s}{R_p F_y} \\
F_{ct} \geq F_y
\]

\[P_{ud} = A_s F_y + 0.85 f'c' A_c\]
Local buckling, Plate Slenderness, Axial Compression

- In accordance with AISC 341-22 Section H7.5s, steel plate slenderness ratio at the base of C-PSW/CF (protected zones) should be limited as follows:

 \[
 \frac{S}{t_p} < 1.05 \sqrt{\frac{E_s}{R_y F_y}}
 \]

- Steel plate slenderness ratio at regions, which are protected zones should be limited as follows:

 \[
 \frac{S}{t_p} < 1.2 \sqrt{\frac{E_s}{F_y}}
 \]

Tie Bar Size, Spacing, and Stability of Empty Modules

- Empty steel module flexibility governed by effective shear stiffness \((G A)_{\text{eff}}\) associated with Vierendeel truss / frame action

\[
\Delta_{\text{total}} = \frac{5 \times w L^4}{384 \times E I_{\text{total}}} + \frac{w E^2}{8 \times G A_{\text{eff}}} \quad \text{dominates}
\]

(Varma et al., 2019)
Tie Bar Size, Spacing, and Stability of Empty Modules

- Stability of empty modules during erection, construction and concrete placement → important consideration for design

\[
\frac{S}{t_p} < 1.0 \sqrt[2]{\frac{E_s}{2\alpha + 1}}
\]

Where, \(\alpha = 1.7 \left(\frac{h_{tx}}{t_p} - 2 \right) \left(\frac{t_f}{d_{tx}} \right)^4 \)

- \(\alpha \) is the ratio of plate flexural stiffness to tie flexural stiffness
- \(\alpha \) governs the value of \((GA)_{eff}\), and thus the tie spacing \(S/t_p\) requirement
- Still need to meet plate slenderness req.
Recommendations for Stiffness

In-Plane Flexural Stiffness

- Account for concrete cracking corresponding to the required strength level
- Section moment-curvature response → secant stiffness corresponding to 60% of moment capacity
- Extent of concrete cracking, if drift governs or walls are overdesigned

\[
EI_{\text{eff}} = E_s I_s + 0.35 E_c I_c
\]
Effective flexural stiffnesses (AISC Design Guide 37, 2021)

\[
EA_{\text{eff}} = E_s A_s + 0.45 E_c A_c
\]
Effective axial stiffnesses (AISC Design Guide 37, 2021)

\[
GA_{\text{eff}} = G_s A_{\text{wall}} + G_c A_c
\]
Effective shear stiffnesses (AISC Design Guide 37, 2021)

Recommendations for Flexural Strength

Plastic stress distribution over composite cross-section

- Steel in compression & tension → \(f_y \)
- Compression concrete → 0.85\(f_c' \)
- Equilibrium to calc. plastic neutral axis location, \(c \)
- Plastic moment \(M_p \)

Nominal flexural strength of planar C-PSW/CF:

\[
M_p = C \left(\frac{c - t_e}{2} \right) + C_1 \left(\frac{c - t_e}{2} \right) + C_2 \left(\frac{c - t_e}{2} \right) + C_3 \left(\frac{c - t_e}{2} \right) + C_4 \left(\frac{c - t_e}{2} \right) + C_5 \left(\frac{c - t_e}{2} \right)
\]
(AISC Design Guide 37, 2021)
Recommendations for Shear Strength

- In accordance with AISC 360-22 Section I4.4, nominal in-plane shear strength of L-shaped C-PSW/CFs is determined considering the steel section and infill concrete contributions as follows:

\[V_{n,wall} = \frac{K_s + K_{sc}}{\sqrt{3K_s^2 + K_{sc}^2}} A_{s,wall} f_y \]

(AISC Design Guide 37, 2021)

where, \(K_s = G_s A_{s,wall} \)

(AISC Design Guide 37, 2021)

where, \(K_{sc} = \frac{0.7 (E_s A_d) (E_s A_{s,wall})}{(4E_s A_{s,wall}) (E_c A_c)} \)

(AISC Design Guide 37, 2021)

Seismic Design of Coupled Composite Plate Shear Walls / Concrete Filled (Capacity Design)
Seismic Design of Coupled C-PSW/CF

Seismic Design of Coupled C-PSW/CF

The 2020 Edition of the NEHRP Recommended Seismic Provisions:

- Response modification factor $R = 8$
- Over-strength factor $\Omega_0 = 2.5$
- deflection amplification factor $C_d = 5.5$
Seismic Design Philosophy for Coupled C-PSW/CF

- Coupling beams form plastic hinges and distributed plasticity along structure height
- Walls sized to develop plastic hinges along entire wall height

2D Finite Element Model (Pushover Response)

(accounting for Seismic Design Guide 37, 2021)
Design Example

Building Description

- Coupled L-shaped Composite Plate Shear Walls / Concrete Filled (C-PSW/CFs) are used to resist seismic loads.

- Steel gravity frames are placed around the coupled C-PSW/CFs, and elevators and stairs are located inside the core walls.
Building Description

- 18-story office building
- First story height = 17 ft
- Typical story height = 13 ft
- Total height = 238 ft.

Material Properties

Steel:
- ASTM A572 Grade 50 steel (steel plates) & ASTM A992 Grade 50 steel (wide flange sections)
- $F_y = 50$ ksi
- $F_u = 65$ ksi
- $E_s = 29,000$ ksi
- $G_s = 11,500$ ksi
- $R_y = 1.1$ (ANSI/AISC 341-22 Table A3.1)

Concrete:
- Self-compacting concrete (SCC)
- $f_{c'} = 6$ ksi
- $E_c = 4,500$ ksi
- $G_c = 1,770$ ksi
- $R_c = 1.5$ (ANSI/AISC 341-16 H5-5)
Loads & Load Combinations

Loads:
- Self-weight of structure (gravity frames and core walls) (dead load)
- Floor live load = 50 psf (Redactable)
- Partition = 15 psf
- Superimposed dead load (ceiling and floor finish) = 15 psf
- Curtain wall = 15 psf (wall surface area)

Load Combinations:
- Load combination provided in Chapter 2 of ASCE/SEI 7-16 are considered.
 - $1.4D$
 - $1.2D + 1.6L$
 - $1.2D + 0.5L \pm 1.0E$
 - $0.9D \pm 1.0E$

Building Description

- 3D computer model of the building was developed using a commercial software program for the design of steel gravity frames.

- Based on the preliminary design of gravity frames, the self-weight of structure is calculated.
Seismic Forces

Building Seismic Weight:
- First Story = 1,555 kips
- Typical Story = 1,440 kips
- Roof = 1,263 kips

Seismic Design Parameters:
- $S_{DS} = 1.101g$
- $S_{DI} = 0.650g$
- Site Class D
- Risk Category II
- Seismic Design Category D

Period of the structure
- $T_a = C_u h_n^2 = (0.020) (238 \text{ ft})^{0.75} = 1.21 \text{ seconds}$
- $C_u = 1.4$ (ASCE/SEI 7 Table 12.8-1)
- $T = C_u T_a = (1.4) (1.21) = 1.70 \text{ seconds}$
- $T = 1.87$ (3D ETABS model)
- The period of structure is considered to be the upper limit, $C_u T_a = 1.70$

Design Base Shear

Equivalent Lateral Forces (ELF) procedure was used to calculate the seismic loads:
- $V = C_s W$
- $C_s = \frac{S_{DS}}{R/R_e} = \frac{1.101}{1} = 0.138$ (ASCE/SEI 7 12.8-2)
- $C_s, Max = \frac{S_{DS}}{T(R/R_e)} = \frac{1.101}{1.7(0/1)} = 0.048$ (ASCE/SEI 7 12.8-3)
- $C_s, Min = 0.44 S_{DS} h_e = (0.44)(1.101)(1) = 0.048$ (ASCE/SEI 7 12.8-5)
- $C_s = \frac{0.5 S_1}{(R/R_e)} = \frac{(0.5)(0.65)}{(0/1)} = 0.041$ (ASCE/SEI 7 12.8-6)
- $V = C_s W = (0.048)(25844) = 1,238 \text{ kips}$
- $OTM = \sum_{i=1}^{n} F_i h_i = 217,217 \text{ kip-ft}$
C-PSW/CFs and Coupling Beam Dimensions

C-PSW/CF:
- \(L_w = 12 \text{ ft} \)
- \(t_{sc} = 16 \text{ in.} \)
- \(t_p = \frac{1}{2} \text{ in.} \)

Coupling beams:
- \(L_{CB} = 10 \text{ ft} \)
- \(b_{CB} = 16 \text{ in.} \)
- \(h_{CB} = 24 \text{ in.} \)
- \(t_{CB,f} = \frac{1}{2} \text{ in.} \)
- \(t_{CB,w} = \frac{3}{8} \text{ in.} \)
- \(L_{CB} / h_{CB} = 5 \)

2D Modeling of Coupled C-PSW/CF

C-PSW/CF:
(Report Design Guide 37, 2021)
- \(E_{L_{eff}} = E_s I_s + 0.35 E_c I_c \)
- \(E_{A_{eff}} = E_s A_s + 0.45 E_c A_c \)
- \(G_{A_{eff}} = G_s A_{wall} + G_c A_c \)

Coupling beams:
(Report Design Guide 37, 2021)
- \(0.64 E_{L_{eff,CB}} \)
- \(0.8 E_{A_{eff,CB}} \)
- \(G_{A_{eff,CB}} \)
- \(L_{eff} = 323.8 \text{ in.} \)
Inter-story Drift Limit

- Deformation shape, lateral displacement, and inter-story drift.
- Amplified displacement is calculated by multiplying story displacement value by the deflection amplification factor. Inter-story drift is calculated using the amplified displacement.
- Maximum inter-story is 1.65%.

Linear Elastic Analysis

- $V_{r, CB} = 167$ kips (average)
- $V_{Max, CB} = 223.5$ kips (maximum)
- $M_{U, CB} = \frac{V_{r, CB} L_{CB}}{2} = 835$ kip-ft
- $M_{Max, CB} = \frac{V_{Max, CB} L_{CB}}{2} = 1,117$ kip-ft

<table>
<thead>
<tr>
<th>(#)</th>
<th>Story Elevation (ft.)</th>
<th>Disp. (in.)</th>
<th>Amplified Disp. (in.)</th>
<th>Inter-story Drift (%)</th>
<th>CB Shear Force (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>238</td>
<td>6.95</td>
<td>38.24</td>
<td>1.32</td>
<td>89.2</td>
</tr>
<tr>
<td>Level 18</td>
<td>225</td>
<td>6.59</td>
<td>36.26</td>
<td>1.38</td>
<td>97.1</td>
</tr>
<tr>
<td>Level 17</td>
<td>212</td>
<td>6.22</td>
<td>34.20</td>
<td>1.44</td>
<td>110.2</td>
</tr>
<tr>
<td>Level 16</td>
<td>199</td>
<td>5.83</td>
<td>32.05</td>
<td>1.51</td>
<td>126.0</td>
</tr>
<tr>
<td>Level 15</td>
<td>186</td>
<td>5.42</td>
<td>29.80</td>
<td>1.56</td>
<td>129.4</td>
</tr>
<tr>
<td>Level 14</td>
<td>173</td>
<td>4.99</td>
<td>27.45</td>
<td>1.61</td>
<td>159.9</td>
</tr>
<tr>
<td>Level 13</td>
<td>160</td>
<td>4.55</td>
<td>25.01</td>
<td>1.64</td>
<td>176.0</td>
</tr>
<tr>
<td>Level 12</td>
<td>147</td>
<td>4.09</td>
<td>22.50</td>
<td>1.65</td>
<td>190.6</td>
</tr>
<tr>
<td>Level 11</td>
<td>134</td>
<td>3.63</td>
<td>19.94</td>
<td>1.65</td>
<td>203.1</td>
</tr>
<tr>
<td>Level 10</td>
<td>121</td>
<td>3.16</td>
<td>17.36</td>
<td>1.63</td>
<td>213.1</td>
</tr>
<tr>
<td>Level 9</td>
<td>108</td>
<td>2.69</td>
<td>14.79</td>
<td>1.57</td>
<td>220.1</td>
</tr>
<tr>
<td>Level 8</td>
<td>95</td>
<td>2.23</td>
<td>12.25</td>
<td>1.49</td>
<td>223.5</td>
</tr>
<tr>
<td>Level 7</td>
<td>82</td>
<td>1.78</td>
<td>9.81</td>
<td>1.38</td>
<td>222.4</td>
</tr>
<tr>
<td>Level 6</td>
<td>69</td>
<td>1.36</td>
<td>7.47</td>
<td>1.22</td>
<td>216.0</td>
</tr>
<tr>
<td>Level 5</td>
<td>56</td>
<td>0.97</td>
<td>5.33</td>
<td>1.02</td>
<td>202.8</td>
</tr>
<tr>
<td>Level 4</td>
<td>43</td>
<td>0.62</td>
<td>3.42</td>
<td>0.75</td>
<td>180.9</td>
</tr>
<tr>
<td>Level 3</td>
<td>30</td>
<td>0.33</td>
<td>1.83</td>
<td>0.33</td>
<td>147.5</td>
</tr>
<tr>
<td>Level 2</td>
<td>17</td>
<td>0.12</td>
<td>0.67</td>
<td>0.00</td>
<td>98.7</td>
</tr>
</tbody>
</table>
Design Of Coupling Beams

Flexure-Critical Coupling Beams:

- \(V_{n, \text{exp.CB} \geq \frac{2.4 M_{\text{exp.CB}}}{L_{CB}} } \) (AISC Design Guide 37, 2021)

Expected Flexural Capacity (\(M_{\text{p.exp.CB}} \)):

- \(M_{p, \text{exp.CB}} = 1,582.6 \text{ kip-ft} \)

Minimum Area of Steel:

- \(A_{s, \text{CB.min}} = 0.01 h_{CB} b_{CB} = (0.01)(24)(16) = 3.8 \text{ in.}^2 \) (AISC Spec. I2.2a)
- \(A_{s, \text{CB}} = 33.25 > A_{s, \text{CB.min}} = 3.8 \text{ in.}^2 \)

Steel Plate Slenderness Requirement for Coupling Beams:

- \(\frac{b_{CB}}{t_{CB,f}} = 30.5 < 2.37 \frac{E_l}{R_y f_y} = 2.37 \frac{29000}{(1.1)(50)} = 54.4 \) (AISC 360–22 Table I1.1b)
- \(\frac{h_{CB}}{t_{CB,w}} = 61.3 \geq 2.66 \frac{E_l}{R_y f_y} = 2.66 \frac{29000}{(1.1)(50)} = 61.1 \) (AISC 360–22 Table I1.1b)

Flexural Strength (\(M_{\text{p,CB}} \)):

- \(M_{n, \text{CB}} = M_{p, \text{CB}} = 1,407 \text{ kip-ft} \) (AISC Design Guide 37, 2021)
- \(\phi_p M_{n, \text{CB}} = 1,266 \text{ kip-ft} > M_{U, \text{CB}} = 835 \text{ kip-ft} \)
- \(\frac{M_{r, \text{CB}}}{\phi_p M_{n, \text{CB}}} = 0.66 \quad \frac{M_{U, \text{CB}, \text{Max}}}{\phi_p M_{n, \text{CB}}} = 0.88 \)
Design Of Coupling Beams

Nominal Shear Strength ($V_{n,CB}$):

- $V_{n,CB} = 0.6 F_y A_{w,CB} + 0.06 K_c \sqrt{f_c^f} A_{c,CB} = 592$ kips (AISC Design Guide 37, 2021)
- $\phi V_{n,CB} = 532$ kips > $V_{u,CB} = 167$ kips

\[
\begin{align*}
\frac{V_{n,CB}}{\phi V_{n,CB}} &= \frac{167 \text{ kips}}{532 \text{ kips}} = 0.31 \\
\frac{V_{u,CB}}{\phi V_{n,CB}} &= \frac{223.5 \text{ kips}}{532 \text{ kips}} = 0.42
\end{align*}
\]

Flexure-Critical Coupling Beams (revisited):

- $V_{n,exp,CB} = 0.6 R_y F_y A_{w,CB} + 0.06 K_c \sqrt{R_c f_c^f} A_{c,CB} = 657$ kips
- $V_{n,exp,CB} = 657$ kips > $\frac{2.4 M_{p,exp,CB}}{I_{CB}} = 380$ kips (AISC Design Guide 37, 2021)

Design Of C-PSW/CFs

Minimum and Maximum Area of Steel:

- $A_{g\text{ross,wall}} = (2)\left[(L_w - t_{sc}) + (L_w - t_{sc})t_{sc}\right] = 8,704 \text{ in.}^2$
- $A_{s,\text{min}} = 0.01 A_{g\text{ross,wall}} = (0.01)(8,704) = 87 \text{ in.}^2$ (ANSI/AISC 360-22 I2.2a)
- $A_{s,\text{max}} = 0.1 A_{g\text{ross,wall}} = (0.1)(8,704) = 870 \text{ in.}^2$ (ANSI/AISC 360-22 I2.2a)
- $A_s = (t_p)\left[8L_w + 4t_{sc} - 16t_p\right] = 604 \text{ in.}^2$
- $A_{s,\text{min}} = 87 \text{ in.}^2 < A_s = 604 \text{ in.}^2 < A_{s,\text{max}} = 870 \text{ in.}^2$
Design Of C-PSW/CFs

Slenderness Requirements:

- In accordance with ANSI/AISC 341-22 Section H8.4b, steel plate slenderness ratio, \(b/t \), at the base of C-PSW/CF (protected zones) should be limited as follows:

 \[
 S_{tie} = 12 \text{ in. (the bottom two stories)}
 \]

- Steel plate slenderness ratio, \(b/t \), at regions which are not protected zones:

 \[
 S_{tie,top} = 14 \text{ in.}
 \]

Tie spacing requirements:

- In accordance with ANSI/AISC 360-22 Section I1.6b, the tie bar spacing to plate thickness ratio, \(S/t_p \), should be limited as follows:

 \[
 d_{tie} = 3/4 \text{ in.}
 \]

- Tie spacing requires:

 \[
 \frac{S_{tie,bottom}}{t_p} = 24 < 1.0 \frac{E_s}{2 \times 1 + 1} = 1.0 \frac{29,000}{2(10.07)+1} = 37.0 \quad \text{(AISC Design Guide 37, 2021)}
 \]

 \[
 \frac{S_{tie,top}}{t_p} = 32 < 1.0 \frac{E_s}{2 \times 1 + 1} = 1.0 \frac{29,000}{2(10.07)+1} = 37.0 \quad \text{(AISC Design Guide 37, 2021)}
 \]
Design Of C-PSW/CFs

Required Wall Shear Strength:
- A shear amplification factor of 4 is used to amplify the base shear.
- \(V_{Amplified} = 4,952 \text{ kips} \)
 (AISC Design Guide 37, 2021)
- \(V_{r,wall} = \frac{4,952}{2} = 2,476 \text{ kips} \)

Design Of C-PSW/CFs

Required Flexural Strength of Coupled C-PSW/CFs
- A shear amplification factor of 4 is used to amplify the base shear.

- \(M_{p,\text{exp.CB}} = 1,583 \text{ kip-ft} \)
 (Expected flexural capacity of CB)
- \(V_{n,\text{M,exp.CB}} = \frac{2A_{\text{M,exp.CB}}}{L_{CB}} = 380 \text{ kips} \)
 (Expected shear strength of CB)
- \(\gamma_1 = \frac{\sum_{n=1}^{1.2} M_{p,\text{exp.CB}}}{\sum_{n} M_{U,CB}} = \frac{(18)(1)(1583)}{(18)(835)} = 2.27 \)
 (Overstrength amplification factor)
- \(P_{CB} = 2 \sum_{n} V_{n,\text{M,exp.CB}} = 13,673 \text{ kips} \)
 (Axial force due to coupling action)
- \(M_{r,\text{wall}} = \gamma_1 OTM - P_{CB} L_{eff} = 125,077 \text{ kip-ft} \)
 (Required amplified OTM)
- \(P = -2 \sum_{n} V_{n,\text{M,exp.CB}} - (1.2 \sum_{n} F_{T_{\text{Tr,DLL}}} - (0.5 \sum_{n} F_{T_{\text{Tr,LL}}} = -20,644 \text{ kips} \)
 (axial compression force)
- \(T = 2 \sum_{n} V_{n,\text{M,exp.CB}} - (0.9 \sum_{n} F_{T_{\text{Tr,DLL}}} = 9,219 \text{ kips} \)
 (axial tension force)
Design Of C-PSW/CFs

Wall Tensile Strength:
- \(P_{n,T} = A_f F_y = (604)(50) = 30,200 \text{ kips} \)
- \(\phi_T P_{n,T} = 27,180 \text{ kips} \)
- \(\frac{\phi_T P_{n,T}}{T} = 0.35 \)

Wall Compression Strength:
- A simplified unit width method is considered to calculate nominal compression strength.

Design Of C-PSW/CFs

Wall Compression Strength:
- \(S_{tie} = 12 \text{ in} = 1 \text{ ft} \) (Length of selected unit width)
- \(L_{wall,\text{total}} = 48 \text{ ft} \) (Total length of two C-PSW/CFs)
- \(P_{no} = 2t_p S_{tie} F_y + 0.85 f'_c (t_{sc} - 2t_p) S_{tie} = 1,518 \text{ kips} \) (ANSI/AISC 360-22)
- \(P_e = \frac{\pi^2 E l_{eff} \text{min}}{l_{cr}^4} = 1797 \text{ kips} \)
- \(\frac{P_{no}}{P_e} = 0.84 < 2.25 \) (ANSI/AISC 360-22)
- \(P_{n.C} = P_{no} \left(0.685 \frac{P_{no}}{P_e}\right) = 1,066 \text{ kips} \)
- \(P_{n.C,\text{total}} = P_{n.C} n_{unit-width} = (1,066 \text{ kips})(48) = 51,168 \text{ kips} \)
- \(\phi_C \frac{P_{n.C,\text{total}}}{P} = (0.9)(51,168 \text{ kips}) = 46,051 \text{ kips} \) > \(P = 20,644 \text{ kips} \)
- \(\phi_C P_{n.C,\text{total}} = 0.45 \)
Design Of C-PSW/CFs (Flexural Strength)

Plastic Stress Distribution:

\[M_{P.T.wall} = M_{n.T.wall} = 1,598,236 \text{ kip-in.} \]
\[M_{P.C.wall} = M_{n.T.wall} = 1,761,166 \text{ kip-in.} \]

The effective flexural stiffnesses of tension and compression \((EI_{T.wall}\) and \(EI_{C.wall}\)) L-shaped C-PSW/CFs are used to calculated required flexural strengths of tension and compression walls.

- \(M_{U.T.wall} = \left[\frac{EI_{T.wall}}{EI_{C.wall} + EI_{T.wall}} \right] M_{r.wall} = 652833 \text{ kip-in.} = 54403 \text{ kip-ft} \)
- \(M_{U.C.wall} = \left[\frac{EI_{C.wall}}{EI_{C.wall} + EI_{T.wall}} \right] M_{r.wall} = 848094 \text{ kip-in.} = 70675 \text{ kip-ft} \)

Ratio of demand to capacity:

- \(\frac{M_{U.T.wall}}{\Phi IM_{n.T.wall}} = 0.45 \)
- \(\frac{M_{U.C.wall}}{\Phi IM_{n.C.wall}} = 0.54 \)
P-M Interaction of C-PSW/CFs

![Compression Walls Diagram](image1)

![Tension Walls Diagram](image2)

Design Of C-PSW/CFs (Shear Strength)

Wall Shear Strength:

- \(A_{S,wall} = 4 \left(L_w t_p \right) + 2 \left(t_{SC} t_p \right) = (4)(144)(0.5) + (2)(16)(0.5) = 304 \text{ in.}^2 \)
- \(K_s = G_c A_{S,wall} = (11200)(304) = 3.39 \times 10^6 \text{ kips} \)
- \(K_{sc} = \frac{0.7 (E_c A_c) (E_S A_{S,wall})}{(4E_S A_{S,wall})(E_c A_c)} = 3.14 \times 10^6 \text{ kips} \)
- \(V_{n,wall} = \frac{K_s + K_{sc}}{\sqrt{3 K_s^2 + K_{sc}^2}} A_{S,wall} F_y = 14906 \text{ kips} \)
- \(\phi_V V_{n,wall} = 13416 \text{ kips} > V_{U,wall} = 2476 \text{ kips} \)
- \(\frac{V_{U,wall}}{\phi_V V_{n,wall}} = 0.19 \)
Coupling Beam-to-Wall Connection

Coupling Beam-to-Wall Connection Details
(scaled specimen)

- C-PSW/CF Flange
- C-PSW/CF Web
- Coupling Beam Flange
- Coupling Beam Web
- CJP Weld
- Fillet Weld
- Slots in C-PSW/CF Web
Coupling Beam-to-Wall Connection

- Coupling Beam-to-Wall Connection Details (scaled specimen)

Flange Plate Connection Demand:

- \(T_{\text{flange}} = \min \left(1.2 R_y F_y A_{CB,f}, R_t F_u A_{CB,f} \right) \) = 594 kips
- \(\frac{T_{\text{flange}}}{2} = 297 \) kips

Required Length of CJP Welding:

- \(\frac{T_{\text{flange}}}{2} \leq \phi_d 0.6 F_y t_{CB,f} L_{\text{req.}} \) \(\phi_d = 1.0 \)
- \(\phi_n = 0.9 \)
- \(L_{\text{req}} \geq \frac{T_{\text{flange}}}{2\phi_d 0.6 F_y t_{CB,f}} = \frac{504}{2(1.0)(0.6)(50)(0.5)} = 19.8 \) in.
- \(L_{\text{weld,f}} = 20 \) in.
Check Shear Strength of Coupling Beam Flange Plate

Shear yielding of coupling beam flange plate:
- \(A_{fy} = t_{CB} f L_{weld} = (0.5)(20) = 10 \text{ in.}^2 \)
- \(\phi_d 0.6 F_y A_{fy} = 300 \text{ kips} \geq \frac{T_{flange}}{2} = 297 \text{ kips} \)

Shear rupture of coupling beam flange plate:
- \(A_{f,SR} = t_{CB} f L_{weld} = (0.5)(20) = 10 \text{ in.}^2 \)
- \(\phi_n 0.6 F_u A_{f,SR} = 351 \text{ kips} > \frac{T_{flange}}{2} = 297 \text{ kips} \)

Check Shear Strength of Wall Web Plates

Shear yielding of wall web plates:
- \(A_{w,SY} = 2 t_p L_{weld} = 2(0.5)(20) = 20 \text{ in.}^2 \)
- \(\phi_d 0.6 F_y A_{w,SY} = 600 \text{ kips} \geq \frac{T_{flange}}{2} = 297 \text{ kips} \)

Shear rupture of wall web plates:
- \(A_{w,SR} = 2 t_p L_{weld} = 2(0.5)(20) = 20 \text{ in.}^2 \)
- \(\phi_n 0.6 F_u A_{w,SR} = 702 \text{ kips} > \frac{T_{flange}}{2} = 297 \text{ kips} \)
Check Ductile Behavior of Flange Plates

In coupling beam flange plate to C-PSW/CF connection design, the available tensile rupture strength should be higher than the available tensile yield strength.

\[A_{LM,f,g} = (b_{CB} + 2\text{ in.}) \cdot t_{CB,f} = (16 + 2)(0.5) = 9 \text{ in.}^2 \] (Gross area)

\[A_{LM,f,n} = b_{CB} \cdot t_{CB,f} = (16)(0.5) = 8 \text{ in.}^2 \] (Net area)

\[R_y \cdot F_y \cdot A_{LM,f,g} = (1.1)(50)(9) = 495 \text{ kips} \] (Available tension yielding capacity)

\[R_t \cdot F_u \cdot A_{LM,f,n} = (1.1)(65)(8) = 572 \text{ kips} \] (Available tension rupture capacity)

\[R_t \cdot F_u \cdot A_{LM,f,n} = 572 \text{ kips} > R_y \cdot F_y \cdot A_{LM,f,g} = 495 \text{ kips} \]

Calculate Forces in Web Plates

\[T_{2,exp} = 773 \text{ kips} \] (Expected tension force of CB web)

\[C_{2,exp} = 217 \text{ kips} \] (Expected compression force of CB web)

\[C_{CB,exp} = 5.26 \text{ in.} \] (Plastic neutral axis of CB considering \(M_{CB,exp} \))

\[T_{web} = 1.2 \left(T_{2,exp} - C_{2,exp} \right) = 667 \text{ kips} \] (CB web plates tension force)

\[M_{web} = 1.2 \left(T_{2,exp} \frac{C_{CB,exp}}{2} + C_{2,exp} \frac{h_{CB} \cdot C_{CB,exp}}{2} \right) = 407 \text{ kip-ft} \] (CB web plates moment)

\[V_{web} = 2 \left(\frac{1.2 \cdot M_{p,exp,EB}}{L_{CB}} \right) = 380 \text{ kips} \] (CB web plates shear force)
Calculate Force Demand on C-Shaped Weld

\[T_{C,\text{weld}} = \frac{T_{\text{web}}}{2} = 333 \text{ kips} \]
\[M_{C,\text{weld}} = \frac{M_{\text{web}}}{2} = 203 \text{ kip-ft} \]
\[V_{C,\text{weld}} = \frac{V_{\text{web}}}{2} = 190 \text{ kips} \]

\[D_{\text{min}} = \frac{3}{16} \text{ in.} \]
\[D_{\text{max}} = \frac{5}{16} \text{ in.} \]
\[D = \frac{5}{16} \text{ in.} \]
\[D_{\text{min}} \leq D \leq D_{\text{max}} \]

Calculate Capacity of C-Shaped Weld

Eccentricity = \(\frac{M_{C,\text{weld}}}{V_{C,\text{weld}}} = 12.85 \text{ in.} \)
\[c.\ g. = \frac{L_{H,\text{weld,w}}}{2L_{H,\text{weld,w}} + L_{V,\text{weld,w}}} = \frac{30^2}{2(36) + (22)} = 10.98 \text{ in.} \]
\[e_x = \text{Eccentricity} + (L_{H,\text{weld,w}} - c.\ g.) = 31.88 \text{ in.} \]
\[k = \frac{L_{H,\text{weld,w}}}{L_{V,\text{weld,w}}} = \frac{30}{22} = 1.36 \]
\[a = \frac{e_x}{L_{V,\text{weld,w}}} = \frac{11}{22} = 1.45 \]
\[P_{V,\text{weld}} = \phi P \frac{C_{8.8} \cdot C_{1-8.3} \cdot (16D)L_{V,\text{weld,w}}}{} \]
\[P_{V,\text{weld}} = 334 \text{ kips} \]
\[V_{C,\text{weld}} = 190 \text{ kips} \]
\[\frac{V_{C,\text{weld}}}{P_{V,\text{weld}}} = 0.62 \]
Calculate Capacity of C-Shaped Weld

\[P_{T,\text{weld}} = \phi_n 0.6 F_{\text{XX}} 2 L_{H,\text{weld}} 0.7071D = (0.9)(0.6)(70)(2(30))(0.7071)(5/16) \]

\[P_{T,\text{weld}} = 501 \text{ kips} \quad \Rightarrow \quad T_{c,\text{weld}} = 333 \text{ kips} \]

\[\frac{T_{c,\text{weld}}}{P_{T,\text{weld}}} = 0.67 \]

\[\text{Capacity} = \sqrt{\frac{N_{c,\text{weld}}^2}{P_{V,\text{weld}}}} = \sqrt{(0.64)^2(0.67)^2} = 0.91 \leq 1 \]

Questions
DISCLAIMER

- NOTICE: Any opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of the Federal Emergency Management Agency. Additionally, neither FEMA, nor any of its employees make any warranty, expressed or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process included in this publication.

- The opinions expressed herein regarding the requirements of the NEHRP Recommended Seismic Provisions, the referenced standards, and the building codes are not to be used for design purposes. Rather the user should consult the jurisdiction’s building official who has the authority to render interpretation of the code.

- This set of training materials is intended to remain complete in its entirety even if used by other presenters. If the training materials are excerpted in part for use in other presentations, we ask users to provide a reference/citation to this document and related chapter authors and acknowledge the possibility of incomplete interpretation if only part of the material is used.