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 Ordinarily, a large earthquake produces the most severe loading that a building is expected to 
survive.  The probability that failure will occur is very real and is greater than for other loading 
phenomena.  Also, in the case of earthquakes, the definition of failure is altered to permit 
certain types of behavior and damage that are considered unacceptable in relation to the 
effects of other phenomena.

 The levels of uncertainty are much greater than those encountered in the design of structures to 
resist other phenomena. The high uncertainty applies both to knowledge of the loading function 
and to the resistance properties of the materials, members, and systems. 

 The details of construction are very important because flaws of no apparent consequence often 
will cause systematic and unacceptable damage simply because the earthquake loading is so 
severe and an extended range of behavior is permitted.

Fundamental Concepts (1)
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 During an earthquake the ground shakes violently in all directions.  Buildings respond to the shaking 
by vibration, and the movements caused by the vibration and the ground motion induce inertial 
forces throughout the structure.  

 In most parts of the country the inertial forces are so large that it is not economical to design a 
building to resist the forces elastically.  Thus inelastic behavior is necessary, and structures must be 
detailed to survive several cycles of inelastic behavior during an earthquake.

 The structural analysis that is required to exactly account for the dynamic loading and the inelastic 
response is quite complex and is too cumbersome for most projects.  The NEHRP Provisions and 
ASCE 7 provide simplified approximate analysis approaches that overcome these difficulties.

 Rules for detailing structures for seismic resistance are provided by standards such as ACI 318 and 
the AISC Specification and the AISC Seismic Provisions

Fundamental Concepts (2)
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Seismic Activity on Earth
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Tectonic Plates
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Section of Earth Crust at Ocean Rift Valley
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Section of Earth Crust at Plate Boundary (Subduction Zone)
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Fault Features

Dip angle

Fault

Fault trace Strike angleN
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Faults and Fault Rupture

Fault plane

Hypocenter (focus)

Rupture surface

Epicenter
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Types of Faults

Strike Slip
(Left Lateral)

Strike Slip
(Right Lateral)

Normal Reverse (Thrust)
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Seismic Wave Forms (Body Waves)

Compression Wave (P Wave) Shear Wave (S Wave)
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Seismic Wave Forms (Surface Waves)

Love Wave Rayleigh Wave
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Arrival of Seismic Waves

Love WavesP Waves S Waves

16

 Ground Failure

• Rupture

• Landslide

• Liquefaction

• Lateral Spreading

 Tsunami

 Seiche

 Ground Shaking

Effects of Earthquakes
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Recorded Ground Motions
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Shaking at the Holiday Inn During the 1971 San Fernando Valley EQ
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 Probabilistic / Deterministic (Separate Maps)

 Uniform Risk (Separate Maps)

 Spectral Contours (PGA, 0.1, 0.2 sec)

 5 % Damping

 Site Class B/C Boundary

 Maximum Direction Values

NEHRP (2009) Seismic Hazard Maps
T=0.2 Seconds

T=1.0 Seconds
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Structural Dynamics of SDOF Systems
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 Includes all dead weight of structure

 May include some live load

 Has units of force/acceleration

Mass
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 In absence of dampers, is called inherent damping

 Usually represented by linear viscous dashpot

 Has units of force/velocity

Linear Viscous Damping

Damping
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Damping and Energy Dissipation

Damping
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Damping vs displacement response is elliptical for linear viscous damper.

AREA =
ENERGY
DISSIPATED
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 Includes all structural members

 May include some “seismically nonstructural” members

 Requires careful mathematical modelling

 Has units of force/displacement

Elastic Stiffness

Sp
rin

g 
Fo

rc
e

Displacement

1.0

K

St
iff

ne
ss

26

 Is almost always nonlinear in real seismic response

 Nonlinearity is implicitly handled by codes

 Explicit modelling of nonlinear effects is possible (but very difficult)

Inelastic Behavior
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Undamped Free Vibration
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Undamped Free Vibration (2)
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20-story moment resisting frame T = 2.4 sec

10-story moment resisting frame T = 1.3 sec

1-story moment resisting frame T = 0.2 sec

20-story steel braced frame T = 1.6 sec

10-story steel braced frame T = 0.9 sec

1-story steel braced frame T = 0.1 sec

Gravity dam T = 0.2 sec

Suspension bridge T = 20  sec

Periods of Vibration of Common Structures

30

Damped Free Vibration
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Damped Free Vibration (2)
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cc is the critical damping constant.

Time, sec

Displacement, in

 is expressed as a ratio (0.0 <  < 1.0) in computations. 

Sometimes  is expressed as a% (0 <  < 100%).

Response of Critically Damped System,  or 100% critical
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True damping in structures is NOT viscous.  However, for low damping values, viscous 
damping allows for linear equations and vastly simplifies the solution.

Damped Free Vibration (3)
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Damping in Structures

Welded steel frame  = 0.010

Bolted steel frame  = 0.020

Uncracked prestressed concrete  = 0.015

Uncracked reinforced concrete  = 0.020

Cracked reinforced concrete  = 0.035

Glued plywood shear wall  = 0.100

Nailed plywood shear wall  = 0.150

Damaged steel structure  = 0.050

Damaged concrete structure  = 0.075

Structure with added damping = 0.250
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Undamped Harmonic Loading and Resonance
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Damped Harmonic Loading and Resonance 
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Resonant Response Curve
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 Fourier transform

 Duhamel integration

 Piecewise exact

 Newmark techniques

General Dynamic Loading

All techniques are carried out numerically.
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Effective Earthquake Force
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Simplified SDOF Equation of Motion
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For a given ground motion, the response history ur(t) is function of the structure’s 
frequency  and damping ratio 

Use of Simplified Equation of Motion

)()()(2)( 2 tutututu grrr   

Ground motion acceleration history 

Structural frequency

Damping ratio
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Change in ground motion or structural 
parameters  and  requires re-
calculation of structural response

Use of Simplified Equation
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An elastic displacement response spectrum is a plot of the peak computed relative displacement, 
ur, for an elastic structure with a constant damping , a varying fundamental frequency  (or 
period T = 2/ ), responding to a given ground motion.

Creating an Elastic Response Spectrum
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Pseudoacceleration Spectrum
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The pseudoacceleration response spectrum represents the total acceleration of the system, not 
the relative acceleration. It is nearly identical to the true total acceleration response spectrum for 
lightly damped structures.

Pseudoacceleration is Total Acceleration
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Using Pseudoacceleration to Compute Seismic Force

Example Structure

K = 500 k/in

W = 2,000 k

M = 2000/386.4 = 5.18 k-sec2/in

 = (K/M)0.5 =9.82 rad/sec

T = 2/= 0.64 sec

5% critical damping

At T = 0.64 sec, pseudoacceleration = 301 in./sec2
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Response Spectra for 1971 San Fernando Valley EQ (Holiday Inn)
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Averaged Spectrum and Code Spectrum
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NEHRP/ASCE 7 Design Spectrum

Constant Acceleration

Constant Velocity

Constant Displacement
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NEHRP 2020 Multi-Period Spectrum and “Two” Period Spectrum
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MDOF Systems

u1

u2

u3
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 MDOF Systems may either be solved step by step through time by using the full set of equations 
in the original coordinate system, or by transforming to the “Modal” coordinate system, 
analyzing all modes as SDOF systems, and then converting back to the original system.  In such 
a case the solutions obtained are mathematically exact, and identical.  This analysis is referred 
to as either Direct (no transformation) or Modal (with transformation) Linear Response History 
Analysis.  This procedure is covered in Chapter 16 of ASCE 7.

 Alternately, the system may be transformed to modal coordinates, and only a subset (first 
several modes) of equations be solved step by step through time before transforming back to 
the original coordinates.  Such a solution is approximate.  This analysis is referred to as Modal 
Linear Response History Analysis.  This procedure is not directly addressed in ASCE 7 (although 
in principle, Ch. 16 could be used)

Analysis of Linear MDOF Systems
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 Another alternate is to convert to the modal coordinates, and instead of solving step-
by-step, solve a subset (the first several modes) of SDOF systems system using a 
response spectrum.  Such a solution is an approximation of an approximation.  This 
analysis is referred to as Modal Response Spectrum Analysis.  This procedure is 
described in Chapter 12 of ASCE 7.

 Finally, the equivalent lateral force method may be used, which in essence, is a one-
mode (with higher mode correction) Modal Response Spectrum Analysis.  This is an 
approximation of an approximation of an approximation (but is generally considered to 
be “good enough for design”.)  The Provisions and ASCE 7 do place some restrictions 
on the use of this method.

Analysis of Linear MDOF Systems
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V  CsW

Basic Base Shear Equations in NEHRP and ASCE 7

SDS and SD1 are short and one second (T=0.2 s and 1.0 s)Design Basis Spectral 
Accelerations, including Site Effects

Ie is the Importance Factor

R is a Response Modification Factor, representing Inelastic Behavior (Ductility, 
Over-strength, and a few other minor ingredients).

Cs 
SDS

R /Ie  Cs 
SD1

T R /Ie 

56

Building Designed for Wind or Seismic Load 

120’

90’

62.5’

Building properties:
Moment resisting frames
Density  = 8 pcf
Period T = 1.0 sec
Damping  = 5%
Soil Site Class “B”

Total wind force on 120’ face = 406 kips

Total wind force on 90’ face = 304 kips

Total ELASTIC earthquake force (in each direction) = 2592 kips
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 ELASTIC earthquake forces 6 to 9 times wind!

 Virtually impossible to obtain economical design

Comparison of EQ vs Wind

4.6
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V
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 Pay the premium for remaining elastic

 Isolate structure from ground (seismic isolation)

 Increase damping (passive energy dissipation)

 Allow controlled inelastic response

How to Deal with Huge EQ Force?

Historically, building codes use inelastic response procedure.

Inelastic response occurs through structural damage (yielding).

We must control the damage for the method to be successful.
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Nonlinear Static Pushover Analysis

60

Mathematical Model and Ground Motion
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Results of Nonlinear Analysis

Maximum
displacement:

Number of
yield events:

Maximum
shear force:

4.79”

542 k

15

62

Response Computed by Nonlin

Yield displacement = 500/550 = 0.91 inch

  
Maximum Displacement

Yield Displacement

4 79

0 91
526

.

.
.Ductility Demand
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The frame, designed for a wind force which is 15% of the ELASTIC earthquake force, can 
survive the earthquake if:

 It has the capability to undergo numerous cycles of INELASTIC deformation

 It has the capability to deform at least 5 to 6 times the yield deformation

 It suffers no appreciable loss of strength

REQUIRES ADEQUATE DETAILING

Interim Conclusion (the Good News)

64

As a result of the large displacements associated with the inelastic deformations, the 
structure will suffer considerable structural and nonstructural damage.

 This damage must be controlled by adequate detailing and by limiting structural 
deformations (drift).

Interim Conclusion (The Bad News)
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Development of the Equal Displacement Concept

Concept used by:

IBC
NEHRP
ASCE-7

ASCE 41

In association with “force based”
design concept.  Used to predict
design forces and displacements

In association with static pushover
analysis.  Used to predict displacements
at various performance points.

66

“The displacement of an inelastic system, with stiffness K and strength Fy, subjected to a 
particular ground motion, is approximately equal to the displacement of the same system 
responding elastically.”

(The displacement of a system is independent of the yield strength of the system.) 

The Equal Displacement Concept
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Repeated Analysis for Various Yield Strengths (and constant stiffness)

68

Constant Displacement Idealization of Inelastic Response
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 For design purposes, it may be assumed that inelastic displacements are equal to the
displacements that would occur during an elastic response.

 The required force levels under inelastic response are much less than the force levels 
required for elastic response. 

Equal Displacement Idealization of Inelastic Response

70

Equal Displacement Concept of Inelastic Design
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Key Ingredient: Ductility

Ductility supply MUST BE > ductility demand =
577

0 91
6 34

.

.
.

Using response spectra, estimate elastic force 
demand FE

Estimate ductility supply, m, and determine 
inelastic force demand FI = FE /m. Design 
structure for FI.

Compute reduced displacement. dR, and 
multiply by m to obtain true inelastic 
displacement, dI.  Check Drift using dI.

Application in Principle
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Application in Practice (NEHRP and ASCE 7)

Use basic elastic spectrum but, for strength, divide all pseudoacceleration values by R, a 
response modification factor that accounts for:

 Anticipated ductility supply

 Overstrength

 Damping (if different than 5% of critical)

 Past performance of similar systems

 Redundancy

Instructional Material Complementing FEMA P-1051, Design Examples

Ductility/Overstrength First Significant Yield



2/10/2022

38

75

First Significant Yield is the level of force that causes complete plastification of at least 
the most critical region of the structure (e.g., formation of the first plastic hinge).

The design strength of a structure is equal to the resistance at first significant yield.

First Significant Yield and Design Strength

76

Overstrength

Displacement
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 Sequential yielding of critical regions

 Material overstrength (actual vs specified yield)

 Strain hardening

 Capacity reduction ( ) factors

 Member selection

 Structures where the proportioning is controlled by the seismic drift limits

Sources of Overstrength

78

Definition of Overstrength Factor 

Design Strength

Overstrength

Apparent Strength

Force

Displacement

Overstrength Factor  = 
Apparent Strength 

Design Strength 
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Instructional Material Complementing FEMA P-1051, Design Examples

Definition of Ductility Reduction Factor Rd

80

Definition of Response Modification Coefficient R

Ductility Reduction Rd = 
Elastic Strength Demand 

Apparent Strength 

Overstrength Factor  = 
Apparent Strength 

Design Strength 

Elastic Strength Demand 
Design Strength 

R = = Rd 
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Definition of Response Modification Coefficient R

82

Definition of Deflection Amplification Factor Cd
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Example of Design Factors for Reinforced Concrete Structures

R o Cd

Special Moment Frame 8 3 5.5

Intermediate Moment Frame 5 3 4.5

Ordinary Moment Frame 3 3 2.5

Special Reinforced Shear Wall 5 2.5 5.0

Ordinary Reinforced Shear Wall 4 2.5 4.0

Detailed Plain Concrete Wall 2 2.5 2.0

Ordinary Plain Concrete Wall 1.5 2.5 1.5

84

Design Spectra as Adjusted for Inelastic Behavior
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Instructional Material Complementing FEMA P-1051, Design Examples

Using Inelastic Spectrum to Determine Inelastic Force Demand

86

Using the Inelastic Spectrum and Cd to Determine the Inelastic Displacement 
Demand
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 Inelastic Behavior

 Structural Design

Overview

88

Design and Detailing Requirements
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Questions
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 NOTICE: Any opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily 

reflect the views of the Federal Emergency Management Agency. Additionally, neither FEMA, nor any of its employees 

make any warranty, expressed or implied, nor assume any legal liability or responsibility for the accuracy, completeness, 

or usefulness of any information, product or process included in this publication. 

 The opinions expressed herein regarding the requirements of the NEHRP Recommended Seismic Provisions, the 

referenced standards, and the building codes are not to be used for design purposes. Rather the user should consult 

the jurisdiction’s building official who has the authority to render interpretation of the code.

 This training material presentation is intended to remain complete in its entirety even if used by other 

presenters. While the training material could be tailored for use in other presentations, we caution users to account for 

issues of completeness and interpretation if only part of the material is used. We also strongly suggest users give 

proper credit/citation to this presentation and its author. 

DISCLAIMER


